Como explicar modelos de previsão de séries temporais econômicas utilizando métodos de Machine Learning? Neste exercício, demonstraremos alguns métodos úteis para avaliar os parâmetros dos preditores em tais modelos. Para isso, utilizaremos o framework da biblioteca Skforecast em Python.
Convidamos um Economista, um Cientista de Dados e um Estatístico para uma competição de previsão. A cada mês, por um ano, eles deveriam compartilhar suas previsões e suas estratégias entre si, viabilizando calibragens. Neste artigo mostramos como foi o desempenho de cada um e o que isso tudo tem a ver com IA e Engenharia de Prompt.
A análise de cointegração possui aplicações no mercado financeiro e em modelagem e previsão macroeconômica, sendo um conceito ao mesmo tempo fascinante e intimidador de se compreender. Por isso, neste texto explicaremos o que é cointegração com um exemplo intuitivo e mostraremos uma aplicação com pares de ações brasileiras usando o Python!
Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.
Este exercício quantifica o repasse cambial sobre a inflação para a economia brasileira sob a ótica de um modelo VAR. Usando dados recentes, estimamos as funções de impulso resposta para analisar choques na variação do câmbio e a resposta ao longo do tempo sobre a inflação de preços livres.