Estimando os parâmetros de uma regressão simples com o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Abel||||" text_font_size="21" use_border_color="off" border_color="#ffffff" border_style="solid"]

A turma de setembro do nosso Curso de Introdução à Econometria usando o R terá uma grande novidade. A apostila e as listas de exercício foram revisadas e atualizadas com exercícios do livro clássico de Jeffrey Marc Wooldridge. Todos feitos no R, de modo a mostrar para o aluno como a teoria pode ser complementada com a prática. Com isso, trazemos ainda mais aplicações para o curso, o que garante total absorção do conteúdo. Para ilustrar, vamos considerar nesse post o modelo de regressão simples. Primeiro, um pouco de teoria e depois um exemplo do Wooldridge feito no R.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/08/postsetembro.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Abel||||" text_font_size="21" use_border_color="off" border_color="#ffffff" border_style="solid"]

Estamos interessados em estimar os parâmetros populacionais \beta_0 e \beta_1 de um modelo de regressão simples

(1)   \begin{align*} y = \beta_0 + \beta_1 x + u  \end{align*}

a partir de uma amostra aleatória de y e x. De acordo com Wooldridge, os estimadores de Mínimos Quadrados Ordinários (MQO) serão

(2)   \begin{align*} \hat{\beta}_0 &= \hat{y} - \hat{\beta_1} \bar{x} \\ \hat{\beta_1} &= \frac{Cov(x,y)}{Var{x}}. \end{align*}

Baseado nos parâmetros estimados, a reta de regressão será

(3)   \begin{align*} \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x. \end{align*}

Para uma dada amostra, nós precisaremos calcular as quatro estatísticas \bar{y}, \bar{x}, Cov(x,y) e Var(x) e colocá-las nessas equações. Para ilustrar, vamos considerar o exemplo 2.3 do Wooldridge sobre Salários de CEOs e Retornos sobre o patrimônio. Para isso, considere o seguinte modelo

(4)   \begin{align*} salary = \beta_0 + \beta_1 roe + u \end{align*}

onde salary é o salário anual de CEO em milhares de dólares e roe é o retorno médio sobre o patrimônio em percentual. O parâmetro \beta_1 irá medir a variação no salário anual quando o retorno médio sobre o patrimônio aumentar em um ponto percentual. Para estimar esse modelo, podemos utilizar o conjunto de dados ceosal1.


data(ceosal1, package='wooldridge')

attach(ceosal1)

Uma vez que tenhamos carregado o conjunto de dados, podemos calcular manualmente os parâmetros \beta_0 e \beta_1, como abaixo.


# Cálculo manual dos parâmetros
b1hat = cov(roe,salary)/var(roe)
b1hat
b0hat = mean(salary) - b1hat*mean(roe)
b0hat

Isto é, a reta de regressão será dada por

(5)   \begin{align*} \hat{salary} = 963.19 + 18.50 * roe. \end{align*}

 Implicando que para um roe = 0, teremos um salário previsto de US$ 963.19, que é o intercepto. Ademais, se \Delta roe = 1, então \Delta salary = US$ 18.50. Podemos, por fim, desenhar a reta de regressão com o código abaixo.


CEOregress = lm(salary ~ roe)
plot(roe, salary, ylim=c(0,4000))
abline(CEOregress, col='red')

E o resultado...

[/et_pb_text][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/08/coversetembro.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como otimizar um portfólio de investimentos no Python?

Este post apresenta, de forma prática e didática, como aplicar o modelo de otimização de carteiras de Markowitz utilizando Python. A partir de dados reais de ações brasileiras, mostramos como calcular retornos, medir riscos e encontrar a combinação ótima de ativos com base nas preferências de risco do investidor. Utilizamos a biblioteca Riskfolio-Lib para estruturar a análise e gerar gráficos como o conjunto de oportunidades e a fronteira eficiente.

O que são SLMs?

Assim como os LLMs, os Small Language Models (SLMs) são Modelos de Linguagem baseados em IA em versões mais compactas, projetados para funcionar com menos recursos computacionais, menor latência e maior privacidade. Neste exercício mostramos como usar estes modelos usando API's ou localmente através do Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.