Exercícios do Wooldridge: Crimes no Campus

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

No nosso Curso de Introdução à Econometria usando o R, os alunos aprendem a estimar modelos lineares a partir de Mínimos Quadrados Ordinários, tendo uma prática constante com o R. Para ilustrar como aprender econometria é divertido, podemos replicar um exemplo do livro clássico do Wooldridge, de Introdução à Econometria. Escolhemos aqui o exemplo 4.4, que avalia a relação entre quantidade de alunos em um campus e criminalidade nele.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2018/09/Copy-of-Copy-of-Turmas-de-setembro.png" show_in_lightbox="off" url_new_window="off" use_overlay="off" animation="left" sticky="off" align="left" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Podemos traçar um paralelo intuitivo entre número de alunos em uma universidade e criminalidade no seu campus, especialmente pensando no contexto americano onde é comum morar no ambiente universitário. Mais jovens juntos provavelmente cometem mais, crimes, afinal. É verdade? Se sim, em que medida? Isso é importante para um gestor de políticas públicas, afinal ele precisa alocar policiais de maneira racional.

Vamos carregar a base de dados "campus", do pacote "wooldridge" e estimar o seguinte modelo,  onde C é o número de crimes e M é o número de matrículas.

(1)   \begin{equation*} \log(C) = \beta_0 + \beta_1 \log(M) + \mu \end{equation*}


library(wooldridge)
data(campus)
summary(lm(lcrime ~ lenroll, data = campus))

O leitor que replicar o código acima irá encontrar uma estimativa alinhada com nossa intuição. O parâmetro é positivo, significante e estimado em algo em torno de 1.2. O que nos sugere que um aumento de 1\% nas matrículas de uma universidade leva a um aumento de 1.2\% no número de crimes nela cometidos.

Quer aprender mais sobre econometria? Conheça nossos Cursos Aplicados de R! Membros do Clube do Código têm acesso aos códigos desse e de outros exercícios do capítulo 4 do Wooldridge. Assine o Clube aqui


[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Resultado IPCA-15 - Novembro/2024

A Análise Macro apresenta os resultados do IPCA-15 de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.