Saia do básico, mude do Excel para o R

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

EXCEL é a ferramenta mais avançada que você conhece para lidar com dados? Estatística e Econometria são palavras desconhecidas para você? Elas te dão medo? Você já ouviu falar em Data Science?

Então, esse e-mail é para você! Muita gente por aí anda complicando o termo Data Science. Divulgam-o como se fosse algo voltado apenas para especialistas. Mas não é!

Data Science surgiu do crescimento de base de dados, da grande disponibilidade de informação. Era preciso, então, construir e organizar um conjunto de técnicas para lidar com essa montanha de dados. Assim, nasceu a área de Data Science ou Ciência de Dados.

E esse conjunto de técnicas de Data Science é voltado para todas as áreas, para qualquer profissional que esteja envolto no seu dia a dia com a coleta, tratamento, análise e apresentação de dados! É voltada para você! Você que precisa retirar informação relevante de um conjunto de dados aparentemente confuso.

Saia do básico, saia do Excel e vem para o mundo do R!

[/et_pb_text][et_pb_button admin_label="Botão" button_url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" button_text="Conhecer Cursos de R" button_alignment="center" background_layout="light" custom_button="off" button_letter_spacing="0" button_use_icon="default" button_icon_placement="right" button_on_hover="on" button_letter_spacing_hover="0" /][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como preparar os dados para um modelo preditivo?

Modelos de previsão macroeconômica podem facilmente alcançar um número elevado de variáveis. Mesmo modelos simplificados, como o Modelo de Pequeno Porte (MPP) do Banco Central, usam cerca de 30 variáveis. Isso impõe um grande desafio ao nosso dia a dia: como fazer a gestão destes dados para uso em modelos, desde a coleta até o tratamento?

Transfer Learning para Previsão de Séries Temporais com o Python

A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.