Hiato do Produto vs. Taxa de Desemprego

O IBGE divulgou hoje os resultados da PNAD Contínua - uma das pesquisas que destrinchamos na versão 3.0 do nosso Curso de Análise de Conjuntura usando o R. Ao abrir a pesquisa, as notícias, infelizmente, não são boas. A taxa de desemprego continua recuando muito lentamente. Em dois anos, fazendo o ajuste sazonal na série, houve recuo de apenas um ponto percentual no desemprego.

Isso tem impactos não triviais sobre o crescimento da economia. Como sabe todo estudante de economia, existe uma relação entre o hiato do produto, a diferença entre pib efetivo e pib potencial e o hiato de desemprego, medido pela diferença entre a taxa de desemprego efetiva e a natural. Uma redução muito lenta na taxa de desemprego vai ter, então, efeito sobre a redução do hiato do produto.

É basicamente o que vemos no gráfico acima.

Há entre empresários uma espécie de compasso de espera. Enquanto o Congresso não aprovar a reforma da previdência, dando cabo de uma agenda positiva para o país, será difícil ver a economia deslanchar, gerando emprego e renda...

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.