Coletando dados do Banco Mundial com o R

Ontem, divulguei o pacote OECD de modo que é possível coletar dados da OCDE diretamente para o RStudio. Hoje, a dica é o pacote WDI, que faz coleta de dados do Banco Mundial. Para ilustrar, pego os dados da taxa de poupança e taxa de juros para 2017.


library(WDI)

interest = WDI(country='all',
indicator = 'FR.INR.RINR',
start=2017, end=2017)

saving = WDI(country = 'all',
indicator = 'NY.GNS.ICTR.ZS',
start=2017, end=2017)

Uma vez coletado os dados e depois de algum tratamento, podemos gerar o gráfico abaixo...

Impressiona que em diversas comparações que tenho mostrado por aqui, o Brasil está sempre como um outlier, não é mesmo?

Quer saber mais sobre como usar o R para analisar dados? Conheça o nosso curso de Introdução ao R para Análise de Dados que abriu inscrições ontem, 06/05. O 1º lote está com 30% de desconto, mas deve acabar logo...

Interessados no código do gráfico, basta rolar a barra à direita e colocar o e-mail na nossa newsletter semanal. Toda segunda, envio o código de um dos posts mais comentados e curtidos da semana para a lista!

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Este estudo investiga a dinâmica entre a política monetária e o risco de crédito no Brasil. Utilizando um modelo VAR em R, estimamos que choques na taxa de juros elevam a inadimplência das famílias com uma defasagem significativa, atingindo o pico de impacto cerca de 20 meses após o aperto monetário, a despeito da melhora no mercado de trabalho.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.