12ª semana de corte no crescimento esperado em 2019!

O boletim Focus, divulgado toda segunda-feira pelo Banco Central, trouxe o 12º corte no crescimento mediano esperado para o crescimento esse ano. Abaixo, usamos o pacote rbcb para coletar os dados diretamente do Banco Central. Em seguida, nós tratamos os mesmos, de modo a colocá-los em um data frame. Algo que ensinamos detalhadamente no nosso Curso de Análise de Conjuntura usando o R.


library(rbcb)
pibe = get_annual_market_expectations('PIB Total',
start_date = '2019-01-04')
pib_esperado = pibe$median[pibe$reference_year=='2019']
pib_esp_min = pibe$min[pibe$reference_year=='2019']
pib_esp_max = pibe$max[pibe$reference_year=='2019']
dates = pibe$date[pibe$reference_year=='2019']

data = data.frame(dates=dates, pib=pib_esperado,
min=pib_esp_min, max=pib_esp_max)

Produzimos um gráfico com o código abaixo.


library(ggplot2)
library(scales)
library(ggrepel)
library(png)
library(grid)
library(gridExtra)

img <- readPNG('logo.png')
g <- rasterGrob(img, interpolate=TRUE)

ggplot(data=data, aes(x=dates, y=pib))+
geom_line(size=.8, colour='darkblue')+
labs(title='Crescimento Esperado para 2019',
subtitle='Boletim Focus: mediana das instituições',
caption='Fonte: analisemacro.com.br com dados do BCB.')+
xlab('')+ylab('% a.a.')+
scale_x_date(breaks = date_breaks("4 days"),
labels = date_format("%d/%b"))+
theme(axis.text.x=element_text(angle=45, hjust=1))+
geom_label_repel(label=round(data$pib,2),
color = c(rep('black',1), rep(NA,nrow(data)-1)),
fill = c(rep('#91b8bd',1),
rep(NA,nrow(data)-1)))+
theme(panel.background = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.background = element_rect(fill='#8abbd0'),
axis.line = element_line(colour='black',
linetype = 'dashed'),
axis.line.x.bottom = element_line(colour='black'),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
legend.position = 'bottom',
legend.background = element_rect((fill='#acc8d4')),
legend.key = element_rect(fill='#acc8d4',
colour='#acc8d4'),
plot.margin=margin(5,5,15,5))+
annotation_custom(g,
xmin=as.Date('2019-01-03'),
xmax=as.Date('2019-01-31'),
ymin=1.5, ymax=2)

Abaixo, o gráfico...

Isso e muito mais você aprende em nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.