CAGED mostra recuperação no mercado de trabalho

Os dados do CAGED referentes a setembro divulgados pelo Ministério da Economia hoje mostram uma recuperação consistente no mercado formal de trabalho. Pelo sexto mês consecutivo houve criação líquida de vagas. Em termos dessazonalizados, foram geradas 53.570 vagas. Como ensino no Curso de Análise de Conjuntura usando o R, temos um script automático que trata os dados do CAGED. Abaixo, um gráfico do saldo dessazonalizado entre admitidos e demitidos no CAGED.

A geração acumulada de vagas em 2019 é de 696.853. Abaixo, um gráfico da média móvel anual das séries de admitidos e demitidos.

Observa-se que houve uma virada em meados de 2018, com a série de admitidos superando a de demitidos. Abaixo, o saldo mensal do CAGED por setores.

Como se vê no gráfico, o setor de serviços tem dominado a recuperação nos últimos meses. Por fim, coloco abaixo a razão entre salários de admitidos e demitidos. Houve uma acomodação na margem dessa métrica, importante para verificar o poder de barganha dos novos admitidos ao longo do tempo.

Os dados do CAGED indicam uma recuperação no mercado de trabalho que deve se espalhar pela PNAD nos próximos meses, como aponta a edição 67 do Clube do Código, que fez uma comparação entre as duas séries do ponto de vista econométrico. Em resumo, os dados do CAGED costumam antecipar os da PNAD Contínua.

___________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Resultado PNADc Trimestral - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PNADc Trimestral do 3º trimestre de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.