CAGED mostra recuperação no mercado de trabalho

Os dados do CAGED referentes a setembro divulgados pelo Ministério da Economia hoje mostram uma recuperação consistente no mercado formal de trabalho. Pelo sexto mês consecutivo houve criação líquida de vagas. Em termos dessazonalizados, foram geradas 53.570 vagas. Como ensino no Curso de Análise de Conjuntura usando o R, temos um script automático que trata os dados do CAGED. Abaixo, um gráfico do saldo dessazonalizado entre admitidos e demitidos no CAGED.

A geração acumulada de vagas em 2019 é de 696.853. Abaixo, um gráfico da média móvel anual das séries de admitidos e demitidos.

Observa-se que houve uma virada em meados de 2018, com a série de admitidos superando a de demitidos. Abaixo, o saldo mensal do CAGED por setores.

Como se vê no gráfico, o setor de serviços tem dominado a recuperação nos últimos meses. Por fim, coloco abaixo a razão entre salários de admitidos e demitidos. Houve uma acomodação na margem dessa métrica, importante para verificar o poder de barganha dos novos admitidos ao longo do tempo.

Os dados do CAGED indicam uma recuperação no mercado de trabalho que deve se espalhar pela PNAD nos próximos meses, como aponta a edição 67 do Clube do Código, que fez uma comparação entre as duas séries do ponto de vista econométrico. Em resumo, os dados do CAGED costumam antecipar os da PNAD Contínua.

___________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!