[Dicas de R] Regressão Múltipla

Em post anterior das Dicas de R, vimos o modelo de regressão simples, onde y pode ser explicado por uma única variável x. O problema básico desse tipo de análise é que ela faz uma suposição bastante forte, qual seja, que x não está correlacionado com o erro, dificultando a aplicação da condição ceteris paribus. A análise de regressão múltipla, por outro lado, é mais receptiva a esse tipo de condição, uma vez que ela permite que controlemos outros fatores que afetam y, adicionando os mesmos na equação. Assim, por suposto, se queremos explicar y, podemos utilizar k variáveis, como abaixo:

(1)   \begin{align*} y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_k x_k + u,  \end{align*}

onde \beta_0 é o intercepto, \beta_k é o parâmetro associado a x_k. De modo a obter uma estimativa para 1, devemos observar que

(2)   \begin{align*} E(u|x_1, x_2, ..., x_k) = 0. \end{align*}

Isto é, que todos os fatores no termo de erro não observado u sejam não correlacionados com as variáveis explicativas. De modo a obter estimativas para os \beta_k parâmetros, é possível recorrer ao método de mínimos quadrados ordinários. Isto é, dado

(3)   \begin{align*} \hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + ... + \hat{\beta_k} x_k, \end{align*}

onde \hat{\beta_k} é a estimativa de \beta_k, o método de MQO escolhe as estimativas \hat{\beta_k} que minimizam a soma dos quadrados dos resíduos:

(4)   \begin{align*} \sum_{i=1}^{n} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik})^2. \end{align*}

O problema acima pode ser resolvido por meio de cálculo multivariado, de onde obtemos as condições de primeira ordem

(5)   \begin{align*} \sum_{i=1}^{n} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{i1} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{i2}(y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{ik}(y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0, \nonumber \end{align*}

ou simplesmente, E(u) = 0 e E(x_j u) = 0.

# Interpretação da equação de regressão de MQO

Suponha que tenhamos

(6)   \begin{align*} \hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2. \end{align*}

O intercepto \beta_0 será então o valor previsto de y quando x_1 = x_2 = 0. Já as estimativas \hat{\beta_1} e \hat{\beta_2} devem ser interpretadas como efeito parcial ou simplesmente ceteris paribus. Isto é,

(7)   \begin{align*} \Delta \hat{y} = \hat{\beta_1} \Delta x_1 + \hat{\beta_2} \Delta x_2, \nonumber \end{align*}

de modo que obtemos a variação prevista em y dadas as variações em x_1 e x_2. Em particular, quando x_2 é mantido fixo, de modo que \Delta x_2 = 0, teremos

(8)   \begin{align*} \Delta \hat{y} = \hat{\beta_1} \Delta x_1. \nonumber \end{align*}

Ou, simplesmente,

(9)   \begin{align*} \frac{\partial \hat{y}}{\partial \hat{x_1}} = \hat{\beta_1}, \nonumber \end{align*}

onde \hat{\beta_1} irá medir o efeito da variação de x_1 em y, mantido x_2 constante.

# Exemplo: equação do salário-hora

De modo a ilustrar, vamos considerar o exemplo 3.2 de Wooldridge (2003), em que o mesmo utiliza o conjunto de dados wage1, disponível no pacote wooldridge. Ele pode ser acessado como abaixo.


library(wooldridge)
data(wage1)

modelo = lm(log(wage) ~ educ+exper+tenure, data=wage1)

E abaixo, o nosso modelo.

Dependent variable:
log(wage)
educ 0.092***
(0.007)
exper 0.004**
(0.002)
tenure 0.022***
(0.003)
Constant 0.284***
(0.104)
Observations 526
R2 0.316
Adjusted R2 0.312
Residual Std. Error 0.441 (df = 522)
F Statistic 80.391*** (df = 3; 522)
Note: *p<0.1; **p<0.05; ***p<0.01

De modo a obter a seguinte reta de regressão para o log do salário-hora

(10)   \begin{align*} \hat{log(wage)} = 0.284 + 0.092 educ + 0.0041 exper + 0.022 tenure. \end{align*}

De onde se conclui, por exemplo, que o aumento de um ano na educação formal equivale a um aumento de 9.2% no salário-hora, mantidos exper e tenure fixos.

Quer aprender mais sobre econometria? Conheça nosso Curso de Introdução à Econometria usando o R.

_______________________

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. Editora Cengage.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise regional do mercado de trabalho com dados do CAGED usando Python

Os microdados dos CAGED fornecem informações detalhadas a nível de cidade, sexo, raça, nível de instrução, idade, salário e outras sobre os trabalhadores formais do Brasil, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Transfer Learning: mostrando porque o Python está na ponta do desenvolvimento

A aprendizagem por transferência (transfer learning) é o reuso de um modelo pré-treinado em um novo problema. Portanto, sua utilização torna-se um avanço enorme para a previsão de diferentes tipos de variáveis, principalmente para aquelas ordenadas no tempo. Mostramos nesta postagem o uso do Transfer Learning com o Python para o caso de Séries Temporais.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.