Um novembro decepcionante para o nível de atividade

O IBGE divulgou hoje a Pesquisa Mensal do Comércio (PMC). Com efeito, completa-se a trilha de divulgação das principais pesquisas de nível de atividade: PMC, PMS (Serviços) e PIM-PF (Indústria). As três pesquisas contam com scripts automáticos que são ensinados/disponibilizados no nosso Curso de Análise de Conjuntura usando o R. A seguir, resumimos as três pesquisas.

Métricas da Indústria Geral (%)
Mensal Interanual Trimestral Anual
2019 Sep 0,2 1,0 0,4 -1,3
2019 Oct 0,8 1,1 0,7 -1,3
2019 Nov -1,2 -1,7 -0,1 -1,3

A tabela acima resume as principais métricas referentes à indústria geral. Em novembro, houve queda na margem de 1,2%, o que acabou impactando as demais métricas. No acumulado em 12 meses, a indústria geral flerta com números negativos.

Métricas da PMS-IBGE (%)
Mensal Trimestral Interanual 12 meses
Receita -0,5 0,7 5,0 4,4
Volume -0,1 0,7 1,9 0,9

Na sequência, analisamos a PMS, que também trouxe uma acomodação de -0,1% em novembro. No acumulado em 12 meses, porém, os Serviços mostram um número positivo de 0,9%.

Métricas da PMC-IBGE (%)
Mensal Trimestral Interanual 12 meses
Volume Restrito 0,6 0,5 2,9 1,6
Receita Restrito 0,9 0,7 4,9 4,6
Volume Ampliado -0,5 0,4 3,8 3,6
Receita Ampliado -0,3 0,5 5,5 6,1

O comércio também sofreu com a posição dos automóveis, gerando um número negativo na margem no conceito ampliado. Em 12 meses, contudo, mantém variação de 3,6%. A seguir, nós consolidamos essa última métrica para as três pesquisas em um gráfico.


Como é possível verificar, na métrica de variação mais suave para as três pesquisas, indústria e comércio parecem ainda não refletir os avanços verificados na margem no segundo semestre. Enquanto isso, os serviços mantém alguma estabilidade no período, ainda que experimentem uma trajetória distinta das duas outras pesquisas. Das três, apenas a indústria flerta com números negativos, acusando os efeitos dos choques que abalaram a economia brasileira nos últimos anos.

_________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Frameworks para criar AI Agents

Neste post, vamos dar o primeiro passo rumo à construção de Agentes de IA mais sofisticados, capazes de tomar decisões, interagir com ferramentas externas e lidar com tarefas complexas. Para isso, precisamos entender o papel dos frameworks agenticos (ou agentic frameworks) e como eles podem facilitar esse processo. Aqui introduzimos dois frameworks populares de desenvolvimento de Agentes de IA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.