IBC-Br avança em novembro

Contrariando os resultados das pesquisas do Comércio, Serviços e Indústria, o IBC-Br, o índice de nível de atividade do Banco Central avançou em novembro 0,18%, contra o mês de outubro. O índice conta com script automático que é ensinado/disponibilizado no nosso Curso de Análise de Conjuntura usando o R. A seguir, resumimos os dados do mesmo.

1
2
3
4
5
6
7
8
9
library(ggplot2)
library(scales)
library(gridExtra)
library(BETS)
 
ibc = BETSget(24363, data.frame=TRUE)
ibc_sa = BETSget(24364, data.frame=TRUE)
ibc = data.frame(ibc$date, ibc$value, ibc_sa$value)
colnames(ibc) = c('dates', 'ibc', 'ibc_sa')

Com os dados do índice em mãos, nós construímos uma tabela resumo com os últimos resultados.

Variação do IBC-Br (%)
Mensal Trimestral Interanual Anual
2019 Sep 0,44 0,79 2,07 1,01
2019 Oct 0,09 0,67 1,98 0,95
2019 Nov 0,18 0,75 1,10 0,90

Como é possível ver, na comparação interanual houve avanço de 1,10% e no acumulado em 12 meses, o índice mantém crescimento de 0,9%. Os gráficos a seguir resumem a trajetória das principais métricas de crescimento do índice.

O IBC-Br resume as principais pesquisas de nível de atividade. A despeito do crescimento na margem, a variação em 12 meses ainda mostra um cenário de estagnação próxima a 1%. A expectativa, diga-se, é que isso mude ao longo de 2020.
_________________

(*) Aprenda a construir análises como essa em nossos Cursos Aplicados de R:

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.