Covid-19: o formato da Curva

Ao longo dos últimos dias, tenho publicado nesse espaço alguns posts e exercícios sobre a pandemia do coronavírus. Ontem, a propósito, publiquei o comentário de conjuntura dessa semana com um modelo SIR ajustado aos dados da doença no Brasil. Como é possível observar nesse exercício, o Brasil está no início da transmissão, com um crescimento exponencial dos casos confirmados.

Se olharmos, contudo, para os dados da China, primeiro país exposto à pandemia, a curva de casos confirmados parece seguir um formato logístico. Isso, a propósito, está em linha com a tese de "imunidade de grupo", ou seja, quanto mais pessoas vão sendo expostas ao vírus, mais pessoas ganham imunidade e a contaminação passa a desacelerar.

As curvas em formato de sino que têm sido divulgadas por aí, nesse aspecto, derivam justamente do modelo SIR, onde as pessoas são "compartimentadas" nos grupos de suscetíveis, infectados e recuperados. Ou seja, as pessoas saem de um para outro grupo, daí o formato da curva.

O formato logístico, por seu turno, não significa que devemos simplesmente abandonar as medidas de distanciamento social. Isso porque, quanto mais pessoas forem expostas ao vírus, mais casos graves serão registrados, o que tende a congestionar o sistema de saúde, como temos visto na Itália.

A pergunta de um trilhão de reais, portanto, é onde é o "limite superior" da curva logística.

(*) Isso e muito mais você aprende no nosso Curso de Microeconometria usando o R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.