Análise do CAGED com o R

O Ministério da Economia, enfim, divulgou os dados do CAGED em 2020. Os resultados, adianto, não são nada bons. Para analisar os dados do saldo do CAGED, podemos usar o pacote ecoseries e pegar os dados do IPEADATA. O código abaixo exemplifica.


library(ecoseries)
df_caged = series_ipeadata('272844966', periodicity = 'M')$serie_272844966

Uma vez que os dados sejam baixados, podemos visualizar os meses de abril de diversos anos com o código abaixo.


library(tidyverse)
library(lubridate)
library(scales)

df_caged_abril = filter(df_caged, month(data) == 4)
ggplot(df_caged_abril, aes(x=data))+
geom_bar(aes(y=valor/1000),
colour = ifelse(df_caged_abril$valor > 0, 'blue', "red"),
fill = ifelse(df_caged_abril$valor > 0, 'blue', "red"),
stat='identity', width = 100)+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
scale_x_date(breaks = date_breaks("1 years"),
labels = date_format("%Y"))+
labs(x='', y='Mil pessoas',
title='Saldo do CAGED nos meses de Abril',
caption='Fonte: analisemacro.com.br com dados do CAGED.')+
theme(plot.title = element_text(size=12, face='bold'),
plot.caption = element_text(size=9),
axis.title.y = element_text(size=9),
axis.text.x=element_text(angle=45, hjust=1))

Os dados indicam que houve um queda líquida de 860,5 mil vagas no mês de abril, refletindo a pandemia do coronavírus. Isso é bastante preocupante, uma vez que existe uma correlação forte entre o CAGED e o crescimento do PIB, como pode ser visto abaixo.

No mês de março, diga-se, houve uma queda líquida de 207,4 mil vagas. O gráfico abaixo ilustra.

Feita a dessazonalização da série, nós obtemos o gráfico abaixo, que ilustra melhor o comportamento do saldo do CAGED e o efeito da pandemia sobre ela.

Como se vê, o impacto sobre a série foi brutal. Haverá algum impacto sobre o PIB do 1º trimestre, mas o maior efeito deverá ser mesmo sobre o PIB do 2º tri. O dado do PIB do 1º trimestre será divulgado nessa sexta-feira. Já o do 2º tri será divulgado apenas em setembro.

A relação entre CAGED e crescimento do PIB foi analisada na edição 58 do Clube do Código.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.


____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Análise de Criptomoedas com Python

Aprenda a estruturar um pipeline de dados financeiros com Python. Ensinamos a construção de um dashboard automatizado para coleta, tratamento e visualização de criptomoedas via API.

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.