Análise do Comércio Varejista com o R

O IBGE divulgou hoje pela manhã os resultados de abril da Pesquisa Mensal do Comércio (PMC). A PMC conta com script no nosso Curso de Análise de Conjuntura usando o R que automatiza a coleta, tratamento e apresentação dos dados diretamente do site do SIDRA/IBGE. No corte restrito, houve queda na margem de 16,84%. Já na publicação ampliada, que inclui veículos e materiais de construção, houve queda de 17,73% nessa mesma métrica de comparação. Na comparação interanual, com o mesmo mês do ano passado, a queda no varejo ampliado foi de 27,11%.

A abertura por atividades mostra uma queda de 60,58% na margem no volume de Tecidos, vestuário e calçados. Na comparação interanual, a queda foi de 75,62%, sendo a atividade que mais sofreu com a pandemia. Hipermercados e supermercados tiveram crescimento de 5,85% na comparação interanual.

A apresentação completa dos dados da PMC pode ser vista aqui. O script que gera a apresentação estará disponível na Versão 4.0 do nosso Curso de Análise de Conjuntura usando o R.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como choques inflacionários afetam a previsão da Selic?

Como mensurar a importância de choques na inflação sobre o erro de previsão da taxa de juros? Neste exercício quantificamos esta pergunta sob a ótica de um modelo VAR, usando dados recentes da macroeconomia brasileira. Especificamente, estimamos a decomposição da variância dos erros de previsão do modelo, analisando choques na inflação da gasolina e sua importância sobre a variância dos erros de previsão da taxa Selic.

Modelo de previsão para o preço da gasolina

Neste exercício exploramos os dados públicos sobre o preço da gasolina no Brasil, sua composição, evolução temporal, políticas associadas e, por fim, construímos um modelo simples de previsão. Com um modelo em mãos, o analista pode cenarizar o comportamento futuro da série da forma como preferir. Todos os procedimentos foram feitos usando a linguagem de programação Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.