CAGED volta ao terreno positivo

Em meio ao caos que se tornou a macroeconomia brasileira, um momento positivo nos últimos dias foi a divulgação dos dados do Novo CAGED (ver sobre aqui) referente a julho. Após quatro meses de saldo entre admitidos e demitidos negativo, julho teve saldo positivo de 131 mil. Abaixo, coletamos os dados do Novo CAGED a partir do IPEADATA com o pacote ecoseries.


################################################
######## Análise do CAGED com o R ##############

library(ecoseries)
library(tidyverse)
library(scales)
library(seasonal)

#### Coleta de Dados via IPEADATA ####

## Baixar dados do Novo Caged
saldo_novocaged = series_ipeadata("2096725336", periodicity = 'M')$serie_2096725336
admitidos_novocaged = series_ipeadata("2096725334", periodicity = 'M')$serie_2096725334
demitidos_novocaged = series_ipeadata("2096725335", periodicity = 'M')$serie_2096725335

Como é possível observar, estou pegando os dados Novo CAGED diretamente do IPEADATA. É o início do script desse tema que ensino no nosso Curso de Análise de Conjuntura usando o R. Com base no novo CAGED, podemos gerar o gráfico abaixo.

Em 2020, o resultado líquido está em mais de 1 milhão de vagas perdidas.

____________________

(*) Você aprende a coletar, tratar, analisar e apresentar dados com o R em nossos Cursos Aplicados de R.

(**) Os alunos do plano premium dos nossos Cursos Aplicados de R  têm acesso a mais de 70 exercícios do Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.