O risco fiscal

O mercado se volta para o risco fiscal presente no aumento das necessidades de financiamento do setor público (fluxo) e, consequentemente, para o aumento do endividamento. Diante da forte reação de política pública, em particular pela criação e operacionalização do auxílio emergencial, houve, de fato, uma deterioração adicional nas contas públicas. Para dar uma olhada nos dados, como ensino no nosso Curso de Análise de Conjuntura usando o R, podemos começar carregando alguns pacotes no R, como abaixo.


library(tidyverse)
library(tidyquant)
library(timetk)
library(scales)
library(quantmod)
library(GetTDData)
library(ecoseries)
library(RColorBrewer)
library(rbcb)

Carregados os pacotes, podemos começar pegando os dados de endividamento, como abaixo.


dlsp = get_series(4513)

ggplot(dlsp, aes(x=date, y=`4513`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Líquida do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')

dbgg = get_series(13762) %>%
drop_na()

ggplot(dbgg, aes(x=date, y=`13762`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Dívida Bruta do Govero Geral',
caption='Fonte: analisemacro.com.br com dados do BCB')

A Dívida Bruta do Governo Geral chegou a 88,8% em agosto e a Dívida Líquida fechou em 60,7%, como pode ser visto abaixo.


Essa deterioração nas métricas de endividamento, por óbvio, é resultado direto da piora do fluxo, isto é, das necessidades de financiamento do setor público. A seguir, ilustro.


primario = get_series(5793) %>%
drop_na()

ggplot(primario, aes(x=date, y=`5793`))+
geom_line(size=.8)+
labs(x='', y='% PIB',
title='Necessidades de Financiamento do Setor Público',
caption='Fonte: analisemacro.com.br com dados do BCB')

As contas públicas se tornaram uma bomba relógio prestes a explodir. E ainda não tiveram maior impacto sobre o risco-país e sobre o custo de captação do Tesouro porque o Teto de Gastos ainda se mantém de pé. Sem o teto, é questão de tempo para que o mercado precifique o default brasileiro. 

____________________

*) Para ter acesso aos códigos completos do exercício, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições abertas para as Turmas Especiais dos nossos Cursos de Macro Aplicada.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Análise exploratória para modelagem preditiva no Python

Antes de desenvolver bons modelos preditivos é necessário organizar e conhecer muito bem os dados. Neste artigo, damos algumas dicas de recursos, como gráficos, análises e estatísticas, que podem ser usados para melhorar o entendimento sobre os dados usando Python.

Como usar modelos do Sklearn para previsão? Uma introdução ao Skforecast

Prever séries temporais é uma tarefa frequente em diversas áreas, porém exige conhecimento e ferramentas específicas. Os modelos de machine learning do Sklearn são populadores, porém são difíceis de aplicar em estruturas temporais de dados. Neste sentido, introduzimos a biblioteca Skforecast, que integra os modelos do Sklearn e a previsão de séries temporais de forma simples.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.