IPA Agro vs. Alimentação no Domicílio

O Índice de Preços por Atacado-Oferta Global (IPA-OG), no seu corte restrito aos produtos agrícolas, tem avançado de forma bastante pronunciada nos últimos meses. Em setembro, por exemplo, o índice variou 8,57%, o que no acumulado em 12 meses gerou uma variação de 46,2%. Dada a sua relação com os índices ao consumidor, não é de se estranhar que a última edição do Relatório de Inflação do Banco Central tenha contido um box sobre o assunto. Nesse Comentário de Conjuntura, vamos mostrar como coletar os dados do IPA e da Inflação no Domicílio a partir do Sistema de Séries Temporais do Banco Central e do SIDRA/IBGE. São assuntos, diga-se, que eu ensino no nosso Curso de Análise de Conjuntura usando o R.

script começa carregando alguns pacotes de R:


###########################################################
################## IPA vs. IPCA ##########################

library(sidrar)
library(tidyverse)
library(tstools)
library(BETS)

Uma vez carregados os pacotes, podemos usar o pacote sidrar para coletar os dados da alimentação no domícilio dentro do Índice de Preços ao Consumidor Amplo (IPCA).


alim_dom_01 =
get_sidra(api='/t/1419/n1/all/v/63/p/all/c315/7171/d/v63%202')

alim_dom_02 =
get_sidra(api='/t/7060/n1/all/v/63/p/all/c315/7171/d/v63%202')

alim_dom = full_join(alim_dom_01, alim_dom_02) %>%
mutate(date = parse_date(`Mês (Código)`, format="%Y%m")) %>%
mutate(alim_12m = acum_p(Valor,12)) %>%
select(date, Valor, alim_12m)

Podemos na sequência pegar o IPA Agro diretamente do site do Banco Central usando para isso o pacote BETS.


ipa_agro = BETSget(7460, data.frame = TRUE) %>%
mutate(ipa_12m = acum_p(value,12))

Observe que nos códigos acima, eu já crio uma nova variável com a função mutate que acumula os dados em 12 meses. Uma vez tratados os dados, podemos gerar um gráfico como abaixo.

Observe que ao longo da série histórica é comum haver discrepâncias entre um e outro índice. Na margem, contudo, o IPA Agro tem experimentado uma subida bastante expressiva, o que abre a boca de jacaré entre as séries.

Dada a correlação entre as séries, que também nesse caso implica em causalidade - ver estudo a ser publicado no Clube do Código - existe uma expectativa de repasse da alta do IPA Agro para o consumidor. Isso, por óbvio, irá pressionar a inflação cheia. A conferir, apenas, se o suficiente para gerar alguma pressão sobre a política monetária.

Sempre lembrando que o Banco Central opera a política monetária de modo a conter efeitos secundários de um choque temporário como esse. Isto é, efeitos sobre outros preços, o que caracterizaria uma pressão inflacionária.

_____________________

(*) Para ter acesso aos códigos completos dos nossos exercícios, cadastre-se na nossa Lista VIP aqui.

(**) Inscrições para as Turmas de Verão começam no próximo dia 27/10. Seja avisado por e-mail clicando aqui.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.