Gerando aplicativos interativos com Shiny

No Dicas de R dessa semana, vamos mostrar as funcionalidades básicas da ferramenta Shiny, que permite gerar aplicativos interativos em R. Nosso exemplo será um mapa da localização de jogadores famosos da Champions League ao receberem passes, utilizando os dados da plataforma StatsBomb - acessados através do pacote StatsBombR - e também a formatação em ggplot do pacote ggsoccer. Primeiramente, vamos carregar os pacotes utilizados:


library(shiny)
library(ggplot2)
library(ggsoccer)
library(tidyverse)

Um aplicativo em Shiny possui dois componentes principais: a interface do usuário, e um servidor. O primeiro indica todos os elementos que serão visíveis no programa final, e as interações que podem ocorrer entre eles. A interface apresentada abaixo contém um elemento de título, e um elemento de layout com barra lateral, que é subdivido entre o gráfico principal e a barra que faz a escolha - input do usuário - do jogador a ser apresentado.

ui <- fluidPage(

titlePanel("Posicionamento de jogadores ao receberem passes"),

sidebarLayout(

sidebarPanel(

selectInput(inputId = "players",
label = "Escolha um jogador:",
choices = c("Messi",
"Toni Kroos",
"Cristiano Ronaldo",
"Iniesta",
"Robben",
"Pirlo"))
),

mainPanel(plotOutput("fieldPlot"))

)
)

As escolhas que podem ser feitas foram definidas acima, porém o elemento fieldPlot referenciado na última linha não existe ainda. Ele é gerado internamente e apenas seu resultado é apresentado, logo seu código faz parte do servidor do programa:

server <- function(input, output){

output$fieldPlot <- renderPlot({

passes_de_jogo %>% filter(grepl(input$players, pass.recipient.name)) %>%
ggplot(aes(x=pass.end_location.x, y = pass.end_location.y))+
annotate_pitch(dimensions = pitch_statsbomb) +
geom_bin2d(binwidth = c(5, 5))+
theme_pitch()

})

}

Com os dois componentes em mãos, basta rodar o aplicativo:


shinyApp(ui = ui, server = server)

O resultado pode ser disponibilizado online, através do shinyapps.io. O aplicativo feito aqui está disponível aqui.
Abaixo, um exemplo do resultado:

É interessante notar que os dados aparentam estar invertidos - Robben está recebendo passes do lado esquerdo enquanto
que Cristiano Ronaldo do lado direito, contrariando suas posições originais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.