Gerando aplicativos interativos com Shiny

No Dicas de R dessa semana, vamos mostrar as funcionalidades básicas da ferramenta Shiny, que permite gerar aplicativos interativos em R. Nosso exemplo será um mapa da localização de jogadores famosos da Champions League ao receberem passes, utilizando os dados da plataforma StatsBomb - acessados através do pacote StatsBombR - e também a formatação em ggplot do pacote ggsoccer. Primeiramente, vamos carregar os pacotes utilizados:


library(shiny)
library(ggplot2)
library(ggsoccer)
library(tidyverse)

Um aplicativo em Shiny possui dois componentes principais: a interface do usuário, e um servidor. O primeiro indica todos os elementos que serão visíveis no programa final, e as interações que podem ocorrer entre eles. A interface apresentada abaixo contém um elemento de título, e um elemento de layout com barra lateral, que é subdivido entre o gráfico principal e a barra que faz a escolha - input do usuário - do jogador a ser apresentado.

ui <- fluidPage(

titlePanel("Posicionamento de jogadores ao receberem passes"),

sidebarLayout(

sidebarPanel(

selectInput(inputId = "players",
label = "Escolha um jogador:",
choices = c("Messi",
"Toni Kroos",
"Cristiano Ronaldo",
"Iniesta",
"Robben",
"Pirlo"))
),

mainPanel(plotOutput("fieldPlot"))

)
)

As escolhas que podem ser feitas foram definidas acima, porém o elemento fieldPlot referenciado na última linha não existe ainda. Ele é gerado internamente e apenas seu resultado é apresentado, logo seu código faz parte do servidor do programa:

server <- function(input, output){

output$fieldPlot <- renderPlot({

passes_de_jogo %>% filter(grepl(input$players, pass.recipient.name)) %>%
ggplot(aes(x=pass.end_location.x, y = pass.end_location.y))+
annotate_pitch(dimensions = pitch_statsbomb) +
geom_bin2d(binwidth = c(5, 5))+
theme_pitch()

})

}

Com os dois componentes em mãos, basta rodar o aplicativo:


shinyApp(ui = ui, server = server)

O resultado pode ser disponibilizado online, através do shinyapps.io. O aplicativo feito aqui está disponível aqui.
Abaixo, um exemplo do resultado:

É interessante notar que os dados aparentam estar invertidos - Robben está recebendo passes do lado esquerdo enquanto
que Cristiano Ronaldo do lado direito, contrariando suas posições originais.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar Modelos de Linguagem no R com o pacote {elmer}

Na análise de dados contemporânea, o uso de Modelos de Linguagem (LLMs) vem se consolidando como uma ferramenta poderosa para automatizar e aprimorar tarefas analíticas. Ao integrarmos LLMs a pacotes como o ellmer, podemos ampliar nossas capacidades de extração, interpretação e automação de dados no ambiente R. Neste post, exploramos o papel desses modelos e detalhamos como o ellmer opera dentro do universo da linguagem de programação R.

Introdução ao AutoGen: Agentes Inteligentes na Análise Financeira

O AutoGen é um framework da Microsoft que permite criar agentes de IA colaborativos. Na área financeira, pode automatizar a coleta de dados, cálculos de indicadores e geração de relatórios. Este artigo apresenta os conceitos básicos e um exemplo aplicado a ações de empresas.

Como usar LangGraph e LLMs para prever a inflação no Brasil

Este post apresenta um estudo de caso sobre como utilizar o LangGraph e modelos de linguagem para estruturar um sistema multiagente voltado à previsão do IPCA. O exercício cria um sistema que utiliza-se de personas analíticas que trabalham em paralelo, permitindo validar previsões, calcular métricas de erro e consolidar relatórios automatizados. A abordagem demonstra como fluxos multiagentes podem apoiar a análise econômica, oferecendo múltiplas perspectivas e maior consistência nos resultados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.