Hackeando o R: visualizando conjuntos com UpSet

No Hackeando o R de hoje, vamos mostrar como fazer a visualização de dados separados em diversos grupos, através de gráficos UpSet. Quando temos dados pertencentes a múltiplos grupos, a visualização do tamanho e propriedades de cada interseção cresce rapidamente com o número de grupos. Ferramentas mais comuns de visualização de interseções, como diagramas de Venn, podem criar representações bonitas com múltiplos grupos, porém extrair informações deles acaba sendo complicado. Abaixo, um exemplo de um diagrama de Venn complicado:

Com isso, vamos introduzir a visualização de UpSet. O conceito é definido pela transformação de interseções em uma matriz que representa cada combinação dos conjuntos originais. Além das interseções, a ferramenta também permite a definição de outras agregações, gerando visualizações mais complexas dos dados, conforme a necessidade do pesquisador. Vamos então mostrar aqui como utilizar o pacote ComplexUpset, disponível no CRAN.

library(ggplot2)
library(ComplexUpset)

Iremos utilizar como exemplo os dados de filmes disponíveis no pacote ggplot2movies.


filmes = as.data.frame(ggplot2movies::movies)
filmes = na.omit(filmes)

Para gerar a versão básica de uma visualização UpSet, precisamos dos dados, e de um vetor que indica quais são as categorias. Então, basta utilizar a função upset():


generos = colnames(filmes)[18:24]

upset(filmes, generos, name='gênero', width_ratio=0.1, min_size = 10, set_sizes = FALSE)

Além das contagens, podemos também utilizar o ggplot para apresentar propriedades de cada um dos subgrupos:


upset(
filmes,
generos,
annotations = list(
'Duração'=list(
aes=aes(x=intersection, y=length),
geom=geom_boxplot(na.rm=TRUE)
),
'Nota'=(
ggplot(mapping=aes(y=rating))
+ geom_jitter(aes(color=log10(votes)), na.rm=TRUE)
+ geom_violin(alpha=0.5, na.rm=TRUE)
+ scale_alpha_continuous(label = 'a')
),
'Orçamento'=upset_annotate('budget', geom_boxplot(na.rm=TRUE))
),
min_size=10,
width_ratio=0.1,
set_sizes = FALSE
)


________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Previsão do CPI usando text mining

Exploramos neste exercício, de forma similar a Ferreira (2022), a utilidade de tópicos latentes extraídos dos comunicados do FOMC, por um modelo LDA, na previsão da inflação norte-americana, medida pelo CPI. O objetivo é comparar um modelo econométrico simples, tal como um AR-GAP de Faust e Wright (2013), em especificações com e sem os fatores textuais.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.