Personalizando temas do ggplot2 com o operador %+replace%

Os temas dos ggplot2, e suas extensões, são uma "mão na roda" quando trabalhamos com visualização de dados no R, mas nem sempre atendem todas as nossas necessidades. Neste breve tutorial exploramos como personalizar esses temas com um operador pouco conhecido do ggplot2: o operador %+replace%. Já ouviu falar dele?

O operador %+replace%

O operador %+replace% serve basicamente para modificar elementos de um determinado tema do pacote ggplot2. Portanto, se uma determinada estética no gráfico não agradou ou não ficou adequada, podemos modificar o elemento correspondente no tema utilizado na criação do gráfico. Isso é muito útil em relatórios de R Markdown quando optamos por definir um tema padronizado para todos os gráficos. Com essa personalização garante-se que todos os gráficos terão formatação equivalente.

Vamos a um exemplo, aqui utilizaremos o tema theme_clean() proveniente do pacote ggthemes, que é uma extensão do ggplot2 e oferece uma variedade maior de temas em relação ao que vem no ggplot2. O tema vem por padrão com essa cara:

# Instalar/carregar pacotes
if(!require("pacman")) install.packages("pacman")
pacman::p_load(
"ggplot2",
"ggthemes",
"magrittr"
)
# Visualização de dados com theme_clean() original
meu_grafico <- ggplot2::economics %>% 
ggplot2::ggplot(ggplot2::aes(x = date, y = pce)) +
ggplot2::geom_line(colour = "darkblue", size = 1.5) +
ggplot2::labs(
title = "Personal Consumption Expenditures (PCE)",
y = "US$ Bilhões",
x = "",
caption = "Fonte: FRED"
)
meu_grafico + ggthemes::theme_clean()

Essas linhas que contornam o gráfico podem ser inconvenientes, né? Portanto, vamos modificar esse elemento de forma a criar um tema personalizado. Para fazer isso, introduzimos o operador %+replace%.

O %+replace% pode ser utilizado de forma similar ao conhecido pipe (%>%), usamos ele no final da linha que especifica o tema com o elemento que queremos modificar e, na próxima linha, realizamos as modificações desejadas dentro da função theme() do pacote ggplot2. Por fim, para poder aplicar essa modificação do tema em um gráfico, colocamos o código dentro de uma função.

# Theme_clean() personalizado
theme_am <- function() {
ggthemes::theme_clean() %+replace%
ggplot2::theme(
plot.background = ggplot2::element_rect(colour = NA),
legend.background = ggplot2::element_rect(colour = NA)
)
}
# Visualização de dados com theme_clean() personalizado
meu_grafico + theme_am()


Simples e eficiente, não?

E uma dica extra para quem trabalha com relatórios em R Markdown: podemos utilizar a função theme_set() do pacote ggplot2 logo nas primeiras linhas de código do relatório para definir globalmente o tema de todos os gráficos do relatório.


# Configurar tema padrão
ggplot2::theme_set(theme_am())

Referências úteis

- Documentação do ggplot2: https://ggplot2.tidyverse.org/
- Documentação do ggthemes: https://jrnold.github.io/ggthemes/

________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que são LLMs?

Anteriormente, aprendemos que cada Agente precisa de um Modelo de IA em seu núcleo, e que os LLMs são o tipo mais comum de modelos de IA para esse propósito.

Agora, vamos aprender o que são LLMs e como eles impulsionam os Agentes. Esta seção oferece uma explicação técnica concisa sobre o uso de LLMs.

O que são Agentes de IA?

O que é um agente e como ele funciona? Como agentes tomam decisões usando racioncínio e planejamento? Neste artigo, nosso objetivo é investigar estas questões para construir um conhecimento fundamental sobre AI agents.

As diferentes formas de avaliar o erro de um modelo de previsão

Existem tantas siglas para métricas de desempenho de modelos preditivos que é fácil se perder na sopa de letrinhas. Neste artigo, fornecemos uma visão geral das principais métricas para avaliar e comparar modelos de regressão e classificação, usando exemplos com dados em Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.