Hackeando o R: acessando os dados do datasus com o R

Dentro do universo do R, cada vez mais tem sido facilitado o acesso a diversos tipos de dados. Para tanto, O pacote {microdatasus} tem como principal propósito a importação dos microdados do DATASUS, este sendo um sistema do estado brasileiro de apoio a conexão e suporte de informações sobre a saúde com os entes federativos. No Hackeando o R de hoje, iremos dar uma olhada sobre o pacote.

Antes de tudo é necessário realizar o download do pacote, que se encontra no repositório do autor no github.


# remotes::install_github("rfsaldanha/microdatasus")

library(microdatasus)
library(tidyverse)

O pacote se separa em dois tipos de funções, a primeira  sendo fetch_datasus(), que consiste na função que realiza o download dos dados. E o segundo tipo, que se refere ao pré-processamento dos dados, sendo eles: process_sim(), process_sinac() e process_sih().

Para importar os dados mostraremos exemplos da função fetch_datasus().

(obs: antes de replicar o código, certifique que sua máquina pode lidar com grandes quantidades de dados. O processo pode demorar um pouco).

# Sistema de Informação sobre Mortalidade de Minas Gerais de 2019

data_sim_mg <- fetch_datasus(year_start = 2019,
year_end = 2019,
uf = "MG",
information_system = "SIM-DO")

# Sistema de informação Hospital Descentralizada de Minas Gerais de 2019
data_sih_mg <- fetch_datasus(year_start = 2019,
year_end = 2019,
month_start = 1,
month_end = 12,
uf = "MG",
information_system = "SIH-RD")

# Sistema de informações sobre Nascidos Vivos de Minas Gerais de 2019

data_sinasc_mg <- fetch_datasus(year_start = 2019,
year_end = 2019,
uf = "MG",
information_system = "SINASC")

Trataremos de pegar somente dados de um único ano, já que são grandes quantidade de dados. Dependendo da máquina, pode demorar um pouco o tempo de download.

Ao seguir a etapa, agora é preciso tratar os dados com as respectivas funções de cada sistema.


# Trata os dados do SIM

sim_mg <- process_sim(data_sim_mg)

# Trata os dados do SIH

sih_mg <- process_sih(data_sih_mg)

# Trata os dados do SIA

sinasc_mg <- process_sinasc(data_sinasc_mg)

As variáveis dos dados de cada sistema possuem uma forma especial de lidar, além de seus nomes serem processados em abreviações. Para obter a informações de todas as variáveis e suas convenções, é recomendável checar o repositório do github do pacote.


# Seleciona os dados de interesse: Estado civil da mãe e Sexo do bebê

sinasc <- sinasc_mg %>%
select(ESTCIVMAE, SEXO) %>%
na.omit()

# Visualiza os número de Mães por Estado Civil

sinasc %>%
count(ESTCIVMAE) %>%
ggplot(aes(x = ESTCIVMAE, y = n,
fill = ESTCIVMAE,
color = ESTCIVMAE,
label = n))+
geom_bar(stat = "identity")+
geom_label(color = "black")+
labs(title = "Estado Civil das Mães de Nascidos em Minas Gerais",
subtitle = "ano de 2019",
x = "",
y = "",
caption = "Elaborado por analisemacro.com.br com dados do DATASUS")+
theme_minimal()+
theme(legend.position = "none")


# Visualiza o número de bebês por sexo

sinasc %>%
count(SEXO) %>%
ggplot(aes(x = SEXO, y = n,
fill = SEXO,
color = "SEXO",
label = n))+
geom_bar(stat = "identity")+
geom_label(color = "black")+
labs(title = "Sexo dos bebês nascidos em Minas Gerais",
subtitle = "ano de 2019",
x = "",
y = "",
caption = "Elaborado por analisemacro.com.br com dados do DATASUS")+
theme_minimal()+
theme(legend.position = "none")

 

 

________________________________

Na Análise macro oferecemos cursos que ensinam você a como lidar com o micro dados e análise de dados. Veja nossa trilha de Micro dados e nosso curso de R para análise de dados.

________________________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.