Relatório #38 - Análise de dados de Crédito no R

Mercado de crédito

O Mercado de crédito compreende-se como um sistema no qual ocorrem trocas financeiras, visando repassar o dinheiro dos poupadores para os tomadores. Esse mercado tem uma importância significativa nos países, principalmente no Brasil, de forma que empresas e pessoas consigam financiamento e empréstimos , estimulando novas formas de negócio e promovendo a dinâmica da economia. Para a análise do Mercado de Crédito, podemos acompanhar as concessões totais de créditos por tomadores, bem como a taxa média de juros dessas operações para que possamos compreender o momento macroeconômico do país. No post de hoje, iremos ensinar a como coletar esses indicadores e também a dessazonalizar e deflacionar as concessões de crédito. Esse exercício faz parte do nosso Curso de Análise de Conjuntura com o R, onde ensinamos a coletar, tratar e visualizar os dados do Mercado de Crédito.

Pacotes

# Carregar pacotes
library(GetBCBData)
library(magrittr)
library(dplyr)
library(ggplot2)
library(scales)
library(tidyr)
library(deflateBR)
library(lubridate)
library(ggseas)
library(stringr)
library(zoo)

</pre>
## Funções e objetos úteis

# Cores para gráficos e tabelas
colors <- c(
blue = "#282f6b",
red = "#b22200"
)

# Fonte para gráficos e tabelas
foot_ibge <- "Fonte: analisemacro.com.br com dados do BCB."

# Definir padrão de gráficos
ggplot2::theme_set(
theme(
plot.title = ggplot2::element_text(size = 15, hjust = 0, vjust = 2)
)
)

Código das séries

Para a coleta dos dados, devemos ter em mãos as séries disponibilizadas pelo Sistema Gerenciados de Séries Temporais do Banco Central. Através delas, coletamos os dados com o pacote {GetBCBData}.

</pre>
## Parâmetros e códigos para coleta de dados
parametros <- c(
# Concessões de crédito - Total - R$ (milhões)
"Concessões de crédito - Total" = 20631,

# Concessões de crédito - Pessoas jurídicas - Total - R$ (milhões)
"Concessões de crédito - PJ" = 20632,

# Concessões de crédito - Pessoas físicas - Total - R$ (milhões)
"Concessões de crédito - PF" = 20633,

# Taxa média de juros das operações de crédito - Total - % a.a.
"Taxa média de juros das operações de crédito" = 20714
)
<pre>
</pre>
## Coleta dos dados

# Dados do BCB (tidy)
raw_dados <- GetBCBData::gbcbd_get_series(
id = parametros,
first.date = "2000-01-01",
use.memoise = FALSE
)
<pre>

Tratamento

Realizamos o tratamento de forma que possamos deflacionar as séries e visualizá-las.

</pre>
## Tratamento dos dados

# Dados tratados em formato long
dados <- raw_dados %>%
dplyr::select(
"date" = ref.date,
"variable" = series.name,
value
)

# Deflacionar variáveis selecionadas (concessões)
concessoes <- dados %>%
dplyr::filter(
variable %in% c(
"Concessões de crédito - Total",
"Concessões de crédito - PJ",
"Concessões de crédito - PF"
)
) %>%
tidyr::pivot_wider(
id_cols = date,
names_from = variable,
values_from = value
) %>%
dplyr::mutate(
dplyr::across(
-date,
~deflateBR::deflate( # deflacionar séries com o IPCA
nominal_values = .,
nominal_dates = date %m+% months(1),
real_date = format(tail(date, 1), "%m/%Y"),
index = "ipca"
)
)
) %>%
tidyr::pivot_longer(
cols = -date,
names_to = "variable",
values_to = "value"
)
<pre>

Concessões mensais de crédito

concessoes %>% 
dplyr::filter(variable == "Concessões de crédito - Total") %>% 
ggplot2::ggplot(ggplot2::aes(x = date, y = value/1000)) +
ggseas::stat_seas( # dessazonalizar série com X13
start = c(2011, 03), 
frequency = 12,
colour = unname(colors["blue"])
) +
ggplot2::labs(
x = "", 
y = "R$ Bilhões", 
title = "Concessões mensais de crédito",
subtitle = paste0(
"Valores dessazonalizados e deflacionados pelo IPCA - preços de ", 
format(tail(concessoes$date, 1), "%b/%Y")
),
caption = foot_ibge) +
ggplot2::scale_x_date(
breaks = scales::date_breaks("1 year"),
labels = scales::date_format("%Y")
)

Concessões de Crédito: PJ x PF

concessoes %>% 
dplyr::filter(variable %in% c("Concessões de crédito - PJ", "Concessões de crédito - PF")) %>% 
ggplot2::ggplot(ggplot2::aes(x = date, y = value/1000, colour = variable)) +
ggseas::stat_seas( # dessazonalizar série com X13
start = c(2011, 03), 
frequency = 12
) +
ggplot2::labs(
x = "", 
y = "R$ Bilhões", 
title = "Concessões mensais de crédito: PF vs. PJ",
subtitle = paste0(
"Valores dessazonalizados e deflacionados pelo IPCA - preços de ", 
format(tail(concessoes$date, 1), "%b/%Y")
),
caption = foot_ibge) +
ggplot2::scale_x_date(
breaks = scales::date_breaks("1 year"),
labels = scales::date_format("%Y")
) +
ggplot2::scale_color_manual(NULL, values = unname(colors[1:2])) +
ggplot2::theme(legend.position = "bottom")

Taxa média de Juros

dados %>% 
dplyr::filter(variable == "Taxa média de juros das operações de crédito") %>% 
ggplot2::ggplot(ggplot2::aes(x = date, y = value)) +
ggplot2::geom_line(size = 1, colour = unname(colors[1])) +
ggplot2::labs(
x = "", 
y = "% a.a.", 
title = "Taxa média de juros das operações de crédito - Total",
caption = foot_ibge) +
ggplot2::scale_x_date(
breaks = scales::date_breaks("1 year"),
labels = scales::date_format("%Y")
)

Oferta Especial!

No próximo dia 17, das 9h às 19h da manhã, você terá a chance de participar do pré-lançamento do treinamento Análise de Dados Macroeconômicos e Financeiros no R. Para concorrer a uma das vagas com desconto, acesse o link e conheça os detalhes.

____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.