Como Criar um Agente de IA Econometrista

Criar um Agente de IA Econometrista envolve construir um sistema autônomo capaz de entender uma solicitação em linguagem natural, buscar dados econômicos, realizar análises e aplicar modelos econométricos para entregar uma resposta completa.

A abordagem mais eficaz é estruturar o sistema em múltiplos agentes especializados, cada um com um papel definido, que colaboram para resolver a tarefa.

A Estrutura Multi-Agente

  1. Agente Coletor de Dados: A porta de entrada do sistema. Sua única função é interpretar a pergunta do usuário para identificar quais dados são necessários e de onde buscá-los. Ele é equipado com ferramentas para se conectar a APIs de fontes confiáveis, como as do Banco Central (SGS e Focus) e do IBGE (SIDRA).
  2. Agente de Análise de Dados: Após a coleta, este agente entra em ação se a tarefa for uma análise descritiva. Ele possui ferramentas para realizar cálculos estatísticos básicos, como médias, sumarizações, identificação do primeiro ou último valor de uma série temporal e cálculo de variações em um período.
  3. Agente Econometrista (Modelagem): É o especialista do grupo. Ele é ativado para tarefas mais complexas, como regressões lineares ou previsões de séries temporais. Suas ferramentas são modelos econométricos que ele aplica sobre os dados coletados para gerar insights ou projeções.

Tecnologias Essenciais

Para construir um sistema como este, são utilizadas tecnologias específicas:

  • Linguagem: Python é a escolha padrão devido à sua vasta gama de bibliotecas para dados e IA.
  • Orquestração de Agentes: Frameworks como LangChain e LangGraph são fundamentais para definir a lógica, o estado e o fluxo de trabalho (workflow) que conecta os diferentes agentes.
  • Inteligência Artificial: Um Modelo de Linguagem Grande (LLM), como o Gemini, atua como o cérebro de cada agente, capacitando-os a entender as solicitações e a decidir qual ferramenta utilizar.
  • Acesso a Dados: Pacotes como bcb e sidrapy são essenciais para se conectar diretamente às APIs de dados brasileiros.
  • Análise e Modelagem: Bibliotecas como pandas para a manipulação dos dados, statsmodels para a execução de regressões e pmdarima para a criação de previsões automáticas (ARIMA) são cruciais para as ferramentas dos agentes de análise e econometria.

Em resumo, o processo consiste em usar um orquestrador para guiar uma solicitação através de uma cadeia de agentes. O primeiro coleta os dados, que são então passados para um agente analítico ou um modelador econométrico, dependendo da complexidade da pergunta, para finalmente gerar a resposta.

Quer aprender mais?

Conheça nossa Formação do Zero à Análise de Dados Econômicos e Financeiros usando Python e Inteligência Artificial. Aprenda do ZERO a coletar, tratar, construir modelos e apresentar dados econômicos e financeiros com o uso de Python e IA. 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.