Blog

Blog Análise Macro – Desde 2011, encontrando a verdade nos dados

Decomposição do Índice de Condições Financeiras no Python

Este exercício apresenta a construção e decomposição do Índice de Condições Financeiras (ICF) para a economia brasileira, utilizando a linguagem Python. Baseado na abordagem do Banco Central do Brasil, o estudo automatiza a coleta de dados públicos e aplica a Análise de Componentes Principais (PCA) para segregar o índice em sete grupos de ativos, como juros locais, juros externo, risco, etc. A análise permite identificar quais vetores estão atuando sobre a economia, oferecendo um diagnóstico preciso sobre a virada do ciclo financeiro observada no início de 2026.

Atualização de resultados dos modelos de inflação da AM: Janeiro/2026

O IPCA de janeiro veio em +0,33% na variação mensal. O valor veio abaixo da previsão da Análise Macro, de +0,50%.

Construindo um indicador alternativo de incerteza para a economia brasileira

Dá para medir incerteza econômica no Brasil sem bases proprietárias? Neste post, exploramos um exercício de ciência de dados que adapta a metodologia do IIE-Br da FGV usando apenas dados públicos: atas do COPOM como fonte textual e a dispersão das expectativas de mercado para inflação, juros e câmbio. Um exemplo prático de como transformar teoria econômica em um pipeline de dados reprodutível.

Construção e Análise do Índice de Condições Financeiras (ICF) com Python

Este exercício apresenta a replicação do Índice de Condições Financeiras (ICF) do Banco Central do Brasil utilizando a linguagem Python. O estudo detalha o ciclo completo de dados: coleta automatizada de variáveis locais e globais (via APIs do BCB, FRED e Yahoo Finance), tratamento estatístico (padronização e remoção de tendência) e modelagem via Análise de Componentes Principais (PCA). Os resultados validam a metodologia, gerando um indicador aderente à dinâmica histórica de aperto e afrouxamento financeiro da economia brasileira.

Simulação de Choques em Modelos Macroeconômicos

Este exercício quantifica o repasse cambial sobre a inflação para a economia brasileira sob a ótica de um modelo VAR. Usando dados recentes, estimamos as funções de impulso resposta para analisar choques na variação do câmbio e a resposta ao longo do tempo sobre a inflação de preços livres.

Previsões do Boletim Focus em Anos Eleitorais

Eleições são momentos de incerteza, mas os dados do Boletim Focus mostram que nem toda incerteza é igual. Ao analisar as previsões de inflação, juros e câmbio nos anos que antecederam as eleições de 2014, 2018 e 2022, este post investiga como o mercado revisa cenários macroeconômicos ao longo do tempo.

Como Medir o Ciclo das Concessões de Crédito usando Python

Este exercício apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pró ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Atualização de resultados dos modelos de inflação da AM

O IPCA fechou 2025 em 4.26%, ficando acima da meta de 3% ao ano, mas dentro do intevalo de tolerância de ±1,5 ponto percentual. O valor veio abaixo da previsão da Análise Macro, de 4.66%, e abaixo do previsto pelo Boletim Focus, de 4.30%.

Decomposição do Impulso de Crédito no Brasil usando Python

Neste exercício, mostramos como o Python pode ser utilizado para calcular uma métrica central para a compreensão da dinâmica entre crédito e atividade econômica no Brasil, a partir de um ciclo completo e altamente reprodutível de coleta, tratamento e análise de dados.
Análise Macro © 2011 / 2026

comercial@analisemacro.com.br – Rua Visconde de Pirajá, 414, Sala 718
Ipanema, Rio de Janeiro – RJ – CEP: 22410-002