Category

Comentário de Conjuntura

Análise do PIB em 2020 com o R

By | Comentário de Conjuntura

O IBGE divulgou na semana passada o resultado das Contas Nacionais Trimestrais referentes ao último trimestre de 2020. Com efeito, fazemos nesse Comentário de Conjuntura uma análise dos principais resultados da pesquisa, com foco na análise automatizada com o R. Os dados são coletados diretamente do SIDRA/IBGE, tratados e apresentados em uma apresentação em pdf.

Membros do Clube AM têm acesso completo à apresentação e aos códigos que a geraram. 

Os dados são acessados e tratados com o código abaixo:


# PIB com ajuste sazonal
pib_sa = get_sidra(api='/t/1621/n1/all/v/all/p/all/c11255/90707/d/v584%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
mutate(var_marginal = (Valor/lag(Valor,1)-1)*100) %>%
select(date, Valor, var_marginal) %>%
rename(pib_sa = Valor) %>%
as_tibble()
# PIB sem ajuste
pib = get_sidra(api='/t/1620/n1/all/v/all/p/all/c11255/90707/d/v583%202') %>%
mutate(date = as.yearqtr(`Trimestre (Código)`, format='%Y%q')) %>%
mutate(var_interanual = (Valor/lag(Valor,4)-1)*100) %>%
mutate(var_anual = acum_i(Valor, 4)) %>%
dplyr::select(date, Valor, var_interanual, var_anual) %>%
rename(pib = Valor) %>%
as_tibble()
# Juntar os dados
df_pib = inner_join(pib_sa, pib, by='date') %>%
drop_na()

Na sequência, criamos uma tabela resumo com os últimos resultados.

PIB: números-índices e variações
Trimestre PIB_SA Variação Marginal PIB Variação Interanual Variação Anual
2019 Q3 170.84 -0.11 174.02 1.33 1.41
2019 Q4 171.46 0.36 172.09 1.64 1.41
2020 Q1 167.93 -2.06 166.85 -0.27 1.05
2020 Q2 152.46 -9.21 151.59 -10.90 -2.05
2020 Q3 164.14 7.66 167.24 -3.90 -3.38
2020 Q4 169.33 3.16 170.12 -1.14 -4.06

A tabela ilustra o tombo do PIB em 2020, -4,06%, cerca da metade do que era esperado no início da pandemia, para quem gosta de ver o copo meio cheio. O gráfico a seguir ilustra a recuperação em V da economia.

Na sequência, nós podemos ver as principais métricas de crescimento em um único gráfico múltiplo.

Na sequência, nós abrimos o PIB pelos componentes de demanda e de oferta. Primeiro, nós observamos a variação na margem, contra o trimestre imediatamente anterior.

PIB e seus componentes: Variação na margem
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.45 0.26 0.33 -0.11 0.59 2.63 -0.16 -0.52 2.75
2019 Q4 -0.25 -0.25 0.09 0.36 0.28 -2.49 -0.11 2.18 -5.32
2020 Q1 2.01 -0.95 -2.10 -2.06 -1.91 2.38 -0.68 -2.19 -0.33
2020 Q2 -0.87 -13.14 -8.65 -9.21 -11.26 -16.30 -7.69 1.11 -11.84
2020 Q3 -0.59 15.43 6.42 7.66 7.74 10.69 3.46 -1.99 -9.64
2020 Q4 -0.46 1.85 2.67 3.16 3.39 19.99 1.08 -1.36 22.02

A recuperação do PIB na margem se mostrou bastante robusta nos últimos dois trimestres do ano. A FBCF teve crescimento de dois dígitos nesse período, enquanto a indústria, pelo lado da oferta, também avançou com ímpeto. O gráfico abaixo ilustra.

Na sequência, observamos a comparação interanual.

PIB e seus componentes: Variação interanual
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.07 0.51 1.35 1.33 2.13 4.10 -1.14 -3.31 2.16
2019 Q4 -1.44 1.02 1.76 1.64 2.32 0.47 -0.11 -4.76 0.57
2020 Q1 4.03 -0.32 -0.65 -0.27 -0.75 5.97 -0.78 -2.40 5.19
2020 Q2 2.47 -14.10 -10.25 -10.90 -12.25 -13.91 -8.46 0.70 -14.61
2020 Q3 0.38 -0.90 -4.80 -3.90 -5.98 -7.75 -5.25 -1.11 -25.03
2020 Q4 -0.41 1.24 -2.16 -1.14 -2.98 13.52 -4.07 -4.29 -3.09

A comparação interanual mostra a indústria e a FBCF com variações positivas no último trimestre, enquanto os demais componentes, tanto pelo lado da oferta quanto pelo lado da demanda, mostram ainda números negativos.

Por fim, olhamos a variação acumulada em quatro trimestres.

PIB e seus componentes: Variação acumulada em 4 trimestres
Trimestre Agropecuária Indústria Serviços PIB C FBCF G X M
2019 Q3 1.73 0.02 1.64 1.41 2.03 4.26 -0.56 1.67 2.11
2019 Q4 0.63 0.37 1.66 1.41 2.19 3.36 -0.45 -2.38 1.13
2020 Q1 1.59 0.47 1.02 1.05 1.48 4.23 -0.58 -2.48 3.06
2020 Q2 1.95 -3.18 -1.93 -2.05 -2.08 -0.88 -2.63 -2.48 -1.57
2020 Q3 1.78 -3.55 -3.48 -3.38 -4.11 -4.02 -3.67 -1.91 -9.04
2020 Q4 1.96 -3.48 -4.47 -4.06 -5.46 -0.78 -4.68 -1.76 -9.95

Quando o crescimento é suavizado, vemos que o único setor que ainda apresenta números positivos é a agropecuária. Todos os demais componentes do PIB foram para o terreno negativo em 2020, graças à pandemia do novo coronavírus. Os gráficos abaixo ilustram.

_______________________

 

Qual a relação entre o preço da gasolina e o preço do petróleo?

By | Comentário de Conjuntura

Na semana passada, eu comentei aqui nesse espaço sobre a desvalorização dos preços da Petrobras como reação à intervenção do Palácio do Planalto. Já aqui, no Comentário de Conjuntura dessa semana, vamos falar um pouco sobre os preços da gasolina e sua relação com os preços internacionais do petróleo.

Os membros do Clube AM, como sempre, têm acesso aos códigos completos desse Comentário e também a um vídeo explicativo sobre como rodar os códigos.

Os preços da gasolina e demais combustíveis estão disponíveis no site da ANP. Já os preços do petróleo estão disponíveis em várias bases de dados. Aqui, nós usamos os dados disponíveis no FRED Economic Data.

Além dessas séries, também peguei os dados do IPCA para que possamos deflacionar os preços nominais da gasolina. A seguir, podemos ilustrar como variou o preço da gasolina ao longo dos últimos anos e também os seus preços mínimos e máximos ao longo do tempo.

Ao olhar para os dados, não parece existir uma mudança muito alta nos preços médios ao longo do tempo. O "problema" na revenda, em um primeiro olhar, parece residir no tamanho do intervalo dos preços, isto é, na diferença entre preços mínimos e máximos, que no gráfico acima é representado pela área azul clara.

Como se sabe, a Petrobras reajusta os preços de combustíveis nas refinarias de acordo com os preços internacionais do petróleo, o que, diga-se, é um critério correto. A seguir, damos uma olhada nesses preços.

Olhando para os dados do brent, houve um vale nos preços por causa da pandemia. A recuperação desses preços, por certo, deve ser repassada para os preços domésticos de combustíveis. A seguir, o mesmo comportamento pode ser visto no WTI.

O mesmo comportamento, como esperado, é observado no WTI, o que sugere uma recuperação do mercado de petróleo ao longo do ano de 2020, após o pior momento da pandemia. Para além disso, há relação entre os preços da gasolina e os preços internacionais de petróleo?

Parece existir uma correlação positiva entre as séries do WTI e do Brent com os preços médios da gasolina comum. De fato, há alguma evidência de que essa correlação também implica em causalidade, no sentido dos preços internacionais do petróleo para a gasolina, como mostra a aplicação do Procedimento de Toda-Yamamoto às séries.

A correlação positiva entre as séries, diga-se, não parece ser linear ao longo de toda a amostra, como pode ser visto no gráfico acima.

 

___________________

(*) Conheça o Clube AM e faça parte de um grupo exclusivo de compartilhamento de códigos e troca de informações entre os membros;

(**) Uma introdução à análise de dados é feita no nosso Curso de R para Análise de Dados. As inscrições estão abertas para a Turma de Verão: aproveite!

O sofrimento da Petrobras no R

By | Comentário de Conjuntura

Bolsonaro, enfim, fez o que dele se esperava desde o início do mandato: "dilmou". A demissão do presidente da principal estatal brasileira foi um banho de água fria para investidores domésticos e estrangeiros. O problema aqui vai além da Petrobras em si e afeta praticamente toda a política econômica do atual governo. Em campanha, Bolsonaro flertou com o liberalismo, alimentando-se de um sentimento "antiestadismo" pós-operação Lava Jato. Eleito, porém, era visível o desconforto do Presidente da República com a agenda liberal. Era, portanto, questão de tempo que o seu passado intervencionista desse o ar da graça.

Investidores domésticos e estrangeiros, por óbvio, irão colocar isso no preço. Para ilustrar, vamos nesse Comentário de Conjuntura olhar as ações de três empresas estatais: Banco do Brasil, Eletrobras e Petrobras. Além disso, vamos ver o que aconteceu com o Ibovespa, dados os eventos recentes.

Os membros do Clube AM, como sempre, têm acesso aos códigos completos desse Comentário e também a um vídeo explicativo sobre como rodar os códigos.

Vamos começar, como de praxe, carregando alguns pacotes de R.


library(tidyverse)
library(quantmod)
library(timetk)
library(scales)
library(tidyquant)

Feito isso, podemos pegar os dados de ações dessas três estatais a partir da base de dados do yahoo finance.


symbols = c('PETR4.SA', 'BBAS3.SA', 'ELET6.SA')

prices = getSymbols(symbols, src='yahoo', from='2020-01-01') %>%
map(~Ad(get(.))) %>%
reduce(merge) %>%
`colnames<-` (symbols) %>%
tk_tbl(preserve_index = TRUE, rename_index = 'date') %>%
drop_na() %>%
gather(variavel, valor, -date)

Com os dados carregados, nós podemos gerar um gráfico da ação da Petrobras.

A ação da Petrobras sofreu uma queda de 21,5% nessa segunda-feira, mostrando o descontentamento do mercado com a interferência política do Palácio do Planalto sobre a estatal. Para além da Petrobras, será que tivemos queda nas outras estatais? O gráfico abaixo ilustra.

O Banco do Brasil também parece ter sofrido com o "efeito Petrobras": a ação do Banco teve queda de 11,6% nessa segunda-feira. A Eletrobrás, por outro lado, não parece ter sentido impacto relevante, ao menos por enquanto.

E o IBOVESPA?

O Índice Bovespa acabou sendo levado pelo mau humor dos investidores com a interferência política e fechou com queda de quase 5% nessa segunda-feira.

Difícil dizer como acabará o governo Bolsonaro, mas uma coisa parece cada vez mais clara para quem acompanha a política econômica: o flerte com o liberalismo está sepultado.

___________________

(*) Conheça o Clube AM e faça parte de um grupo exclusivo de compartilhamento de códigos e troca de informações entre os membros;

(**) Uma introdução à análise de dados no mercado financeiro é feita no nosso Curso de Mercado Financeiro e Gestão de Portfólios. As inscrições estão abertas para a Turma de Verão: aproveite!

Raio-X da inflação brasileira usando o R

By | Comentário de Conjuntura

Na próxima quinta-feira, às 20h, eu farei uma aula ao vivo sobre estratégias de previsão da inflação mensal medida pelo IPCA. A aula faz parte do lançamento do nosso novo Curso de Previsão Macroeconométrica usando o R. Para garantir sua presença na aula, coloque seu nome na lista aqui para ser avisado. Nesse Comentário de Conjuntura, a propósito, fazemos um raio-x da inflação brasileira, tendo por foco o IPCA. O código completo está disponível para os membros do Clube AM.

Para começar, nós carregamos os pacotes de R que utilizaremos.


library(tidyverse)
library(readxl)
library(sidrar)
library(forecast)
library(tstools)
library(scales)
library(ggrepel)
library(BETS)
library(xtable)
library(lubridate)
library(RcppRoll)
library(knitr)
library(fpp3)
library(xts)
library(reshape2)
library(rbcb)

Com os pacotes carregados, podemos coletar os dados diretamente do SIDRA/IBGE para o RStudio com o código abaixo. Já aproveito para criar a inflação mensal e a inflação acumulada em 12 meses.


## Criar Inflação mensal e acumulada em 12 meses
ipca_indice = 
'/t/1737/n1/all/v/2266/p/all/d/v2266%2013' %>%
get_sidra(api=.) %>%
mutate(date = ymd(paste0(`Mês (Código)`, '01'))) %>%
select(date, Valor) %>%
mutate(mensal = round((Valor/lag(Valor, 1)-1)*100, 2),
anual = round((Valor/lag(Valor, 12)-1)*100, 2))

Como o índice pega toda a hiperinflação da década de 80, nós pegamos uma janela a partir de 2007 com o código a seguir.


## Criar amostra
ipca_subamostra = ipca_indice %>%
filter(date >= as.Date('2007-06-01'))

Uma tabela com os últimos resultados é colocada abaixo.

date Valor mensal anual
159 2020-08-01 5357.46 0.24 2.44
160 2020-09-01 5391.75 0.64 3.14
161 2020-10-01 5438.12 0.86 3.92
162 2020-11-01 5486.52 0.89 4.31
163 2020-12-01 5560.59 1.35 4.52
164 2021-01-01 5574.49 0.25 4.56

Os gráficos do número índice e da inflação mensal e acumulada em 12 meses são colocados abaixo.


Podemos dar um zoom na inflação mensal, como abaixo.

Uma análise estatística da inflação pode ser feita, a começar pelas estatísticas descritivas do nosso dataset.

date Valor mensal anual
Min. :2007-06-01 Min. :2669 Min. :-0.3800 Min. : 1.880
1st Qu.:2010-10-24 1st Qu.:3169 1st Qu.: 0.2500 1st Qu.: 4.190
Median :2014-03-16 Median :3911 Median : 0.4300 Median : 5.250
Mean :2014-03-17 Mean :4017 Mean : 0.4522 Mean : 5.473
3rd Qu.:2017-08-08 3rd Qu.:4855 3rd Qu.: 0.6025 3rd Qu.: 6.492
Max. :2021-01-01 Max. :5574 Max. : 1.3500 Max. :10.710

A seguir, podemos ver uma característica bastante conhecida da inflação que é a sua sazonalidade.

A seguir, nós vemos o boxplot e o histograma da inflação mensal medida pelo IPCA.

Na sequência, nós podemos importar os núcleos de inflação criados e acompanhados pelo Banco Central.


## Pegar núcleos
series = c(ipca_ex2 = 27838,
ipca_ex3 = 27839,
ipca_ms = 4466,
ipca_ma = 11426,
ipca_ex0 = 11427,
ipca_ex1 = 16121,
ipca_dp = 16122)

nucleos = get_series(series, start_date = '2006-07-01') %>%
purrr::reduce(inner_join)

Com os dados dos núcleos disponíveis, nós podemos criar um gráfico como abaixo.

A despeito do avanço da inflação cheia, a média dos sete núcleos do Banco Central ainda se situa abaixo da meta de inflação. A seguir, ilustramos todos os sete núcleos.

Como é possível ver pelo gráfico, todos os sete núcleos situam-se abaixo da meta de inflação, que esse ano é de 3,75%. Na sequência, vemos cada um dos sete grupos, na sua variação mensal.

E a variação acumulada em 12 meses.

Os núcleos de inflação são importantes para expurgar choques que ocorrem sobre o índice cheio. O que se vê pelos gráficos acima é que, de fato, os núcleos ainda estão mais comportados do que a inflação cheia, mas na margem, houve sim uma contaminação.

Outra informação importante é a difusão da inflação, isto é, o percentual de subitens que teve variação positiva no mês. Pelo gráfico acima, é possível ver que na margem há um avanço da difusão, já considerando uma média móvel de 12 meses dos dados.

Na sequência, nós podemos ver a contribuição dos 9 grupos para a inflação cheia. Os dados são coletados diretamente do SIDRA/IBGE.


## Baixar e tratar os dados
variacao =
'/t/7060/n1/all/v/63/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v63%202' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

peso =
'/t/7060/n1/all/v/66/p/all/c315/7170,7445,7486,7558,7625,7660,7712,7766,7786/d/v66%204' %>%
get_sidra(api=.) %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Geral, grupo, subgrupo, item e subitem", Valor) %>%
pivot_wider(names_from = "Geral, grupo, subgrupo, item e subitem",
values_from = Valor)

contribuicao = (variacao[,-1]*peso[,-1]/100) %>%
mutate(date = variacao$date) %>%
select(date, everything())

Na sequência, geramos um gráfico com a variação mensal dos nove grupos.

Como se vê, houve um aumento considerável do grupo Alimentação e bebidas ao longo de 2020, o que contribuiu de forma peremptória para o avanço da inflação ao longo daquele ano. Na sequência, colocamos a contribuição de cada um dos grupos para a inflação mensal.

O gráfico acima ilustra a contribuição do grupo Alimentação e bebidas para a inflação mensal ao longo de 2020. A seguir, baixamos as classificações do IPCA diretamente do Banco Central.


series = c('Comercializáveis' = 4447,
'Não Comercializáveis' = 4448,
'Monitorados' = 4449,
'Não Duráveis' = 10841,
'Semi-Duráveis' = 10842,
'Duráveis' = 10843,
'Serviços' = 10844,
'Livres' = 11428)

classificacoes_ipca = get_series(series, start_date = '2007-01-01') %>%
purrr::reduce(inner_join)

Um gráfico com a variação acumulada em 12 meses é colocado abaixo.

Há uma assimetria entre as classificações do IPCA. Enquanto os preços livres tiveram um avanço nos últimos anos, os monitorados e não comercializáveis seguiram trajetória contrária. Na margem, contudo, essas classificações também mostram algum repique.

Para terminar esse `Raio-x da inflação brasileira`, vamos passar rapidamente pelos Índices Gerais de Preço (IGPs), construídos e divulgados mensalmente pela Fundação Getúlio Vargas. Os (IGPs) são formados por três índices: Índice de Preços por Atacado (IPA), Índice de Preço ao Consumidor (IPC) e Índice Nacional de Custo da Construção Civil (INCC). São divididos por período de coleta em IGP-10, IGP-M e IGP-DI.

Os números-índices do IGP-10, IGP-M e IGP-DI podem ser obtidos aplicando a seguinte fórmula no \mathbf{R}:

(1)   \begin{equation*} IGP_{i,t}=0,6*IPA_{i,t}+0,3*IPC_{i,t}+0,1*INCC_{i,t} \end{equation*}

Onde i pode ser 10, M ou DI.

O código a seguir pega os dados diretamente do Banco Central.


series = list('IGP-M'=189, 'IGP-DI'=190, 'IGP-10'=7447, 'IPC-Br'=191,
'INCC'=192, 'IPA'=225)

indices_gerais = get_series(series, start_date = '2007-01-01') %>%
purrr::reduce(inner_join) %>%
gather(variavel, valor, -date)

Na sequência, colocamos um gráfico que mostra os índices gerais e seus componentes no acumulado em 12 meses.

Como se vê, houve um salto no IPA, o índice de preços no atacado. Como o mesmo representa 60% dos índices gerais, houve um salto grande nesses índices ao longo de 2020. A tabela abaixo mostra a correlação entre os índices gerais, seus componentes e o IPCA.

IGP-10 IGP-DI IGP-M INCC IPA IPC-Br IPCA
IGP-10 1.0000000 0.9839832 0.9961309 0.4423330 0.9714577 0.2969412 0.3105496
IGP-DI 0.9839832 1.0000000 0.9947883 0.3984862 0.9930553 0.2648717 0.2771306
IGP-M 0.9961309 0.9947883 1.0000000 0.4198252 0.9855453 0.2778136 0.2909590
INCC 0.4423330 0.3984862 0.4198252 1.0000000 0.3182797 0.4864669 0.5081419
IPA 0.9714577 0.9930553 0.9855453 0.3182797 1.0000000 0.1571463 0.1702913
IPC-Br 0.2969412 0.2648717 0.2778136 0.4864669 0.1571463 1.0000000 0.9866917
IPCA 0.3105496 0.2771306 0.2909590 0.5081419 0.1702913 0.9866917 1.0000000

Para terminar, então, mostramos o gap entre o IPA e o IPCA no gráfico abaixo.

Membros do Clube AM têm acesso a todos os resultados dessas pesquisas, que contam com scripts automáticos ensinados no nosso Curso de Análise de Conjuntura usando o R.

_______________________

Análise da produção industrial em 2020

By | Comentário de Conjuntura

Hoje o IBGE divulgou o resultado da produção industrial em dezembro. Com efeito, começamos a conhecer os resultados do nível de atividade ao longo de 2020. Nesse Comentário de Conjuntura, fazemos uma análise dos principais aspectos da pesquisa com uso do R. O código completo está disponível para os membros do Clube AM.

Para começar, nós carregamos os pacotes de R que utilizaremos.


library(tidyverse)
library(lubridate)
library(tstools)
library(sidrar)
library(zoo)
library(scales)
library(gridExtra)
library(tsibble)
library(timetk)
library(knitr)

Com os pacotes carregados, podemos coletar os dados diretamente do SIDRA/IBGE para o RStudio com o código abaixo.


# Produção Física por Seção e Atividades
## Número-Indice com ajuste sazonal
tabela_sa = get_sidra(api='/t/3653/n1/all/v/3134/p/all/c544/all/d/v3134%201') %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Seções e atividades industriais (CNAE 2.0)", Valor) %>%
spread("Seções e atividades industriais (CNAE 2.0)", Valor) %>%
as_tibble()

## Número-Índice sem ajuste sazonal
tabela = get_sidra(api='/t/3653/n1/all/v/3135/p/all/c544/all/d/v3135%201') %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Seções e atividades industriais (CNAE 2.0)", Valor) %>%
spread("Seções e atividades industriais (CNAE 2.0)", Valor) %>%
as_tibble()

O código acima importa os números índices com e sem ajuste sazonal da produção industrial. A seguir, podemos criar métricas de crescimento que avaliam o comportamento da produção industrial geral e das atividades industriais.


## Variação na Margem
tabela_sa_ts = ts(tabela_sa[,-1], start=c(year(tabela_sa$date[1]),
month(tabela_sa$date[1])), freq=12)
margem = (tabela_sa_ts/stats::lag(tabela_sa_ts,-1)-1)*100
colnames(margem) <- colnames(tabela_sa[,-1])
margem = tk_tbl(margem, preserve_index = TRUE,
rename_index = 'date')
margem_long = margem %>%
gather(variavel, valor, -date)

## Variação Interanual
tabela_ts = ts(tabela[,-1], start=c(year(tabela$date[1]),
month(tabela$date[1])), freq=12)
interanual = (tabela_ts/stats::lag(tabela_ts,-12)-1)*100
colnames(interanual) <- colnames(tabela[,-1])
interanual = tk_tbl(interanual, preserve_index = TRUE,
rename_index = 'date')
interanual_long = interanual %>%
gather(variavel, valor, -date)

## Variação acumulada em 12 meses
anual = acum_i(tabela_ts,12) %>%
as_tibble() %>%
mutate(date = tabela$date) %>%
drop_na() %>%
select(date, everything())

anual_long = anual %>%
gather(variavel, valor, -date)

A variação na margem pode ser vista a seguir.

Produção Industrial: variação na margem
Mês Indústria Geral Indústria Extrativa Indústria de Transformação
jul 2020 8.62 8.81 9.30
ago 2020 3.49 1.60 3.52
set 2020 2.79 -5.35 3.87
out 2020 1.02 -2.88 1.58
nov 2020 1.12 -4.56 1.78
dez 2020 0.88 3.70 1.53

Os números na margem indicam que houve uma recuperação após o crash causado pela pandemia do coronavírus. Ocorre que as variações na margem estão cada vez menores, o que pode indicar uma perda de fôlego nessa recuperação. Os gráficos a seguir ilustram.

A suavização do crescimento ocorre com a comparação com o mesmo período do ano anterior. A tabela a seguir ilustra.

Produção Industrial: variação interanual
Mês Indústria Geral Indústria Extrativa Indústria de Transformação
jul 2020 -2.57 1.35 -3.22
ago 2020 -2.39 -1.86 -2.51
set 2020 3.81 -4.18 4.84
out 2020 0.31 -6.17 1.14
nov 2020 2.61 -9.09 4.23
dez 2020 8.32 -3.94 10.16

Os dados da comparação interanual mostram como a recuperação ainda é bastante lenta e insuficiente para gerar uma comparação positiva com o ano anterior. Os gráficos a seguir ilustram.

Isso fica mais claro quando suavizamos ainda mais as taxas de crescimento, com a taxa acumulada em 12 meses. Os gráficos a seguir ilustram.

Como mostram os gráficos, a recuperação da indústria ainda não é muito clara. Não houve uma recuperação em V do setor, o que deve acentuar a preocupação com o nível de atividade em 2021.

Nos próximos dias, o IBGE divulga os resultados de dezembro para o Comércio e para os Serviços. Ademais, o BCB divulga o IBC-BR, o que nos ajudará a ter uma visão completa sobre o que ocorreu com o nível de atividade nas pesquisas de alta frequência.

Membros do Clube AM têm acesso a todos os resultados dessas pesquisas, que contam com scripts automáticos ensinados no nosso Curso de Análise de Conjuntura usando o R.

_______________________

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais
e conteúdos exclusivos sobre Análise de Dados!

Assinar Gratuitamente
{"cart_token":"","hash":"","cart_data":""}