Macroeconometria

Investigando a precedência temporal entre o IPCA e as expectativas do IPCA no Boletim Focus usando o R

Neste exercício, buscamos aprofundar a compreensão da dinâmica entre a taxa do IPCA e as expectativas dos agentes econômicos no Brasil, com foco em identificar a direção da precedência temporal entre essas variáveis. O objetivo é entender se as expectativas do IPCA influenciam a taxa do IPCA efetiva ou se o movimento da taxa do IPCA corrente molda as expectativas do mercado.

Investigando a precedência temporal entre a Taxa de Câmbio e as expectativas da Taxa de Câmbio no Boletim Focus usando o R

Neste exercício, buscamos aprofundar a compreensão da dinâmica entre a taxa de câmbio e as expectativas dos agentes econômicos no Brasil, com foco em identificar a direção da precedência temporal entre essas variáveis. O objetivo é entender se as expectativas de câmbio influenciam a taxa de câmbio efetiva ou se o movimento da taxa de câmbio corrente molda as expectativas do mercado.

Investigando a precedência temporal entre a taxa Selic e as expectativas da Selic no Boletim Focus usando o R

Neste exercício, aprofundamos a compreensão da dinâmica entre a taxa Selic e as expectativas dos agentes econômicos no Brasil ao identificar a direção da precedência temporal da relação entre as duas variáveis. A análise engloba desde a coleta e tratamento dos dados até a visualização e análise econométrica, culminando na avaliação da causalidade de Granger e na interpretação dos resultados.

Estimando a inércia inflacionária através de modelos de espaço-estado usando Python

Como a inflação passada pode impactar a inflação presente? Podemos mensurar esse efeito — ou seja, o grau de persistência da inflação — utilizando modelos autorregressivos. Este trabalho apresenta uma forma de calcular essa persistência usando modelos de Espaço de Estados, com Python como ferramenta para coleta de dados, análise e ajuste do modelo.

Prevendo Demanda de Energia usando TimeGPT no Python

Neste exemplo mostramos o poder da IA, especificadamente o uso do TimeGPT para prever os valores da Curva de Carga Horária de Energia Elétrica disponibilizada pela ONS. Comparamos o resultado da previsão com um modelo ingênuo e LGBM. Para o exercício, foi usado a linguagem Python para coleta, tratamento e modelagem.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.