COPOM Watch 06: A nova comunicação do Banco Central

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" use_border_color="off" border_color="#ffffff" border_style="solid"]

Enviamos agora há pouco para os membros do Clube do Código o relatório COPOM Watch 06 com o tema A Nova Comunicação do Banco Central. Nele, analisamos a recente melhora na qualidade da comunicação do Banco Central, por meio da aplicação de índices de legibilidade às atas do Comitê de Política Monetária (COPOM), bem como verificamos como essa série se relaciona com as expectativas de inflação do próprio BCB. Excepcionalmente para esse relatório, decidimos disponibilizar também para não membros em repositório aberto do GitHub aqui. Além do pdf com o relatório, membros do Clube têm acesso a todos os arquivos e scripts que o geraram, usando o R.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section][et_pb_section admin_label="Seção" fullwidth="off" specialty="off" transparent_background="on" background_color="#d34e1d" allow_player_pause="off" inner_shadow="off" parallax="off" parallax_method="off" padding_mobile="off" make_fullwidth="off" use_custom_width="off" width_unit="on" make_equal="off" use_custom_gutter="off"][et_pb_row admin_label="Linha" make_fullwidth="off" use_custom_width="off" width_unit="on" use_custom_gutter="off" padding_mobile="off" background_color="#e02b20" allow_player_pause="off" parallax="off" parallax_method="off" make_equal="off" parallax_1="off" parallax_method_1="off" column_padding_mobile="on"][et_pb_column type="4_4"][et_pb_team_member admin_label="Pessoa" name="Vítor Wilher " position="Bacharel e Mestre em Economia " image_url="https://analisemacro.com.br/wp-content/uploads/2011/03/vitorwilhergnews.png" animation="left" background_layout="dark" linkedin_url="https://www.linkedin.com/in/v%C3%ADtor-wilher-78164024" use_border_color="off" border_color="#ffffff" border_style="solid" saved_tabs="all" twitter_url="https://twitter.com/vitorwilherbr"]

Vítor Wilher é Bacharel e Mestre em Economia, pela Universidade Federal Fluminense, tendo se especializado na construção de modelos macroeconométricos e análise da conjuntura macroeconômica doméstica e internacional. Sua dissertação de mestrado foi na área de política monetária, titulada "Clareza da Comunicação do Banco Central e Expectativas de Inflação: evidências para o Brasil", defendida perante banca composta pelos professores Gustavo H. B. Franco (PUC-RJ), Gabriel Montes Caldas (UFF), Carlos Enrique Guanziroli (UFF) e Luciano Vereda Oliveira (UFF). É o criador do Blog Análise Macro, um dos melhores e mais ativos blogs econômicos brasileiros, sócio da MacroLab Consultoria, empresa especializada em data analysis, construção de cenários e previsões e fundador do Grupo de Estudos sobre Conjuntura Econômica (GECE-UFF). É também Visiting Professor da Universidade Veiga de Almeida, onde dá aulas nos cursos de MBA da instituição. Leia os posts de Vítor Wilher aquiCaso queira, mande um e-mail para ele: vitorwilher@analisemacro.com.br

[/et_pb_team_member][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

PIB do terceiro trimestre surpreende a todos

Os resultados do PIB divulgado pelo IBGE para o terceiro trimestre do ano mostraram que a economia permanece bem aquecida, mas menos do que o mercado esperava. Internamente na Análise Macro, nossos modelos projetavam um crescimento menor do que o ocorrido. O hiato do produto positivo ajuda a explicar as surpresas.

Como gerar cenários para modelos de previsão no Python?

Gerar cenários para as variáveis exógenas é uma etapa crucial da modelagem preditiva, pois é o que define a trajetória projetada da variável de interesse. Diferentemente dos modelos univariados, aqui precisamos informar os valores futuros das variáveis independentes para prever a variável dependente. Há diversas formas de fazer isso e neste exercício mostramos algumas possibilidades aplicadas à previsão do IPCA usando Python.

Resultado PIMPF - Novembro/2024

A Análise Macro apresenta os resultados da PIMPF de Novembro de 2024, com gráficos elaborados em Python para coleta, tratamento e visualização de dados. Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.