Investigando a relação entre o Ibovespa e a variação da FBCF

Na edição 55 do Clube do Código, a ser divulgada para os membros na próxima semana, continuo a investigação iniciada em um comentário de conjuntura sobre a relação entre o Ibovespa e a variação interanual da FBCF. Dessa vez, estimamos um Vetor de Correção de Erros (VEC). Fazemos a análise das funções impulso-resposta e da decomposição de variância a partir do modelo estimado. Ademais, também aplicamos o procedimento de Toda-Yamamoto de modo a investigar causalidade.

Os resultados encontrados sugerem que um choque no Ibovespa tem um efeito positivo na variação interanual da FBCF, aumentando a mesma em mais de 3 pontos percentuais após três trimestres. A decomposição de variância, por seu turno, revela que cerca de 30% da variância da variação interanual da FBCF é explicada pelo Ibovespa, passados 12 trimestres. Por fim, o teste de precedência temporal sugere que o Ibovespa ajuda a explicar a variação da FBCF, enquanto não encontramos evidências no caso contrário.

Membros do Clube do Código têm acesso a todos os códigos que geraram o exercício no repositório do github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Otimizando um Portfólio de Investimentos com Machine Learning

A construção de portfólio ótimo refere-se ao processo de alocar eficientemente capital entre um conjunto predefinido de ativos ou títulos. O campo da construção de portfólio tem sido extensivamente estudado por acadêmicos e profissionais desde a década de 1950, quando Markowitz introduziu sua inovadora abordagem de média-variância para a construção de portfólio. Diante disso, podemos melhorar o processo de alocação de peso de um investimento em um portfólio através do Aprendizado não supervisionado com a aplicação do Hierarchical Risk Parity (HRP). Neste exercício, realizamos uma introdução ao método e mostramos os resultados de um exemplo criado através do Python.

Como usar IA + Python para o Mercado Financeiro?

Neste post, mostramos como a Inteligência Artificial, aliada à linguagem Python, está revolucionando o mercado financeiro. Exploramos as principais áreas onde essa tecnologia pode ser aplicada — como gestão de carteiras, análise de demonstrações contábeis, estratégias quantitativas, trading e análise macroeconômica — com foco em aplicações práticas e exemplos voltados para o contexto brasileiro.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.