Investigando a relação entre o Ibovespa e a variação da FBCF

Na edição 55 do Clube do Código, a ser divulgada para os membros na próxima semana, continuo a investigação iniciada em um comentário de conjuntura sobre a relação entre o Ibovespa e a variação interanual da FBCF. Dessa vez, estimamos um Vetor de Correção de Erros (VEC). Fazemos a análise das funções impulso-resposta e da decomposição de variância a partir do modelo estimado. Ademais, também aplicamos o procedimento de Toda-Yamamoto de modo a investigar causalidade.

Os resultados encontrados sugerem que um choque no Ibovespa tem um efeito positivo na variação interanual da FBCF, aumentando a mesma em mais de 3 pontos percentuais após três trimestres. A decomposição de variância, por seu turno, revela que cerca de 30% da variância da variação interanual da FBCF é explicada pelo Ibovespa, passados 12 trimestres. Por fim, o teste de precedência temporal sugere que o Ibovespa ajuda a explicar a variação da FBCF, enquanto não encontramos evidências no caso contrário.

Membros do Clube do Código têm acesso a todos os códigos que geraram o exercício no repositório do github.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Analisando a Volatilidade de Longo Prazo do Ibovespa usando Python

Com base no modelo GARCH(1,1), realizamos realizar a modelagem da variância condicional dos log retornos diários do Ibovespa, abrangendo o período de janeiro de 2018 até dezembro de 2023. O objetivo principal é compreender a implementação desse modelo utilizando a linguagem de programação Python, além de conduzir uma análise do mercado acionário brasileiro ao longo do período amostral.

Ao concluirmos este exercício, teremos a capacidade de obter uma medida representativa da variância de longo prazo da série temporal. Essa medida poderá ser comparada com a variância histórica, permitindo-nos inferir se a volatilidade presente está atualmente inferior ou superior àquela projetada para o futuro. Essa análise contribuirá para uma melhor compreensão da dinâmica da volatilidade no mercado acionário brasileiro.

Construindo uma NAIRU para o Brasil usando Python

Um dos maiores desafios para aqueles que trabalham com dados econômicos é aliar a prática com a teoria. Para tanto, o uso do Python pode facilitar esse desafio, permitindo construir todos os passos de uma análise de dados. Demonstramos o poder da linguagem tomando como exemplo a construção da NAIRU para o Brasil.

A Abordagem do Estudo de Eventos usando Python

A maioria das pesquisas em finanças está dedicada a investigar o efeito de um anúncio da companhia ou de um evento, sistêmico ou não, sobre o preço de uma ação. Esses estudos são conhecidos como “estudos de eventos”. Neste contexto, apresentaremos uma breve introdução à metodologia e demonstraremos como aplicá-la por meio de exemplos reais utilizando a linguagem de programação Python.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.