A corrida da inflação

Em um post passado eu mostrei que a inflação brasileira comparada a alguns países selecionados está acima da média, com os dados mais recentes. Neste post vou explorar mais o tema com uma perspectiva mais ampla, dialogando com o post recente do professor Roberto Ellery, e aproveitar para exemplificar como podemos gerar uma visualização de dados "animada" no R.

O objetivo é criar uma visualização de dados comparativa entre países selecionados do G20 ao longo dos últimos 10 anos, tomando como base a inflação acumulada em 12 meses. Para tal, usaremos o dataset do IMF e os pacotes ggplot2 e gganimate para gerar a visualização animada.

Uma prévia do resultado final:

Pacotes

Para reproduzir os códigos desse exercício, certifique-se de que tenha os seguintes pacotes instalados/carregados:

Dados

O IMF oferece um rico banco de dados cross-country, sendo que para esse exercício usamos apenas o dataset "CPI", que traz os dados de inflação. Pegamos os dados de inflação % a.m. de 13 países do G20 desde 2011 em frequência mensal e depois acumulamos em 12 meses.

Visualização de dados

Como pode ser observado, os dados estão em formato long, ideal para gerarmos a visualização. Dessa forma, primeiro criamos um objeto auxiliar para armazenar a média histórica da inflação brasileira. Este valor será pontuado no gráfico como uma linha vertical tracejada. Em seguida construímos as camadas do gráfico: com exceção da camada de colunas, o diferencial do gráfico é agregar vários elementos textuais para enriquecer a visualização. Após as definições estéticas e personalizações do tema, usamos a função transition_states() para transformar o gráfico estático do ggplot2 em um gráfico animado (GIF), onde cada frame se refere às observações de 1 ano do conjunto de dados.

Simples, não?

 

________________________
(*) Para entender mais sobre inflação e análise de conjuntura econômica, confira nosso Curso de Análise de Conjuntura usando o R - Versão 5.0.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando dados para monitoramento climático com Python

As condições climatológicas influenciam desde a safra de grãos até a decisão de um vendedor ambulante levar seu carrinho para a praia ou não. Por sua importância e impactos na economia do país, neste exercício mostramos como coletar e elaborar análises de dados sobre o clima usando o Python.

Coletando dados de secas e queimadas no Brasil com Python

Neste artigo exploramos fontes públicas de dados sobre secas e queimadas no Brasil. Mostramos como acessar, coletar e preparar os dados para elaboração de análises. Usamos a linguagem Python para desenvolver uma rotina automatizada.

Como analisar demonstrações contábeis usando IA

Neste post, vamos explorar como utilizar o modelo de linguagem Gemini do Google para analisar demonstrações contábeis anuais da Eletrobras e extrair informações relevantes para tomada de decisão. Através de um código Python, vamos importar os dados direto da CVM, conectar com o Gemini e gerar resumos sobre as contas das demonstrações e perspectivas futuras sobre as finanças da empresa.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.