Análise regional do mercado de trabalho com dados do CAGED usando Python

Os microdados dos CAGED fornecem informações detalhadas a nível de cidade, sexo, raça, nível de instrução, idade, salário e outras sobre os trabalhadores formais do Brasil, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

Aprenda a coletar, processar e analisar dados na formação de Do Zero à Análise de Dados Econômicos e Financeiros com Python.

Passo 01: ambiente de programação

Requisitos: Python e Jupyter instalados e configurados no computador.

  1. Abrir o terminal no seu computador (no Windows procure por “Command Prompt”)
  2. Rodar o código a seguir no terminal: jupyter notebook --NotebookApp.allow_origin='https://colab.research.google.com' --port=8888 --NotebookApp.port_retries=0
  3. Copiar o link que aparece no final da execução do código (selecione e pressione Ctrl+C

  4. Acessar o Google Colab: https://www.colab.new/
  5. Clicar na seta para baixo no canto superior direito do Colab

  6. Clicar na opção “Connect to a local runtime
  7. Colar o link copiado na etapa 3 e pressionar o botão “Connect”

Passo 02: coleta, tratamento e análise de dados

Para obter o código e o tutorial deste exercício faça parte do Clube AM e receba toda semana os códigos em R/Python, vídeos, tutoriais e suporte completo para dúvidas.

  1. Escolher quais arquivos do CAGED serão analisados através da página ftp://ftp.mtps.gov.br/pdet/microdados/ e copiar os links dos mesmos

    Obs: caso não consiga acessar o FTP, siga as orientações da página do MTE ou solicite o suporte de um técnico de informática de sua confiança.

  2. Atualize o código abaixo com o link do arquivo de interesse e ajuste o código para a análise desejada:

Conclusão

Os microdados dos CAGED fornecem informações detalhadas a nível de cidade, sexo, raça, nível de instrução, idade, salário e outras sobre os trabalhadores formais do Brasil, possibilitando ricas análises regionais de dados. Neste artigo mostramos como acessar, processar e analisar estes dados utilizando o Python.

 

Quer aprender mais?

Clique aqui para fazer seu cadastro no Boletim AM e baixar o código que produziu este exercício, além de receber novos exercícios com exemplos reais de análise de dados envolvendo as áreas de Data Science, Econometria, Machine Learning, Macroeconomia Aplicada, Finanças Quantitativas e Políticas Públicas diretamente em seu e-mail.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como analisar o sentimento dos textos do COPOM no Python?

Neste exercício construímos um indicador que busca quantificar o sentimento proveniente das decisões de política monetária no Brasil. Usando técnicas de mineração de texto, implementamos todas as etapas necessárias, desde web scraping e pré-processamento das atas do Comitê de Política Monetária do Banco Central (COPOM), até a criação de tokens e a classificação do sentimento implícito nos textos.

Como importar os textos do COPOM para análise de sentimentos no Python?

Os textos divulgados pelo COPOM, sejam os comunicados ou atas, são o ponto de partida para diversos tipos de análises quantitativas, como a análise de sentimentos, e qualitativas, como uma análise de cenário econômico. Neste artigo, mostramos como coletar estes textos de forma automatizada usando web scrapping e Python.

Como tratar dados no Python? Parte 5: renomeando colunas

Como dar novos nomes significativos para as colunas em uma tabela de dados usando Python? Neste tutorial mostramos os métodos de renomeação de colunas disponíveis na biblioteca pandas, que tem como vantagem sua sintaxe simples e prática.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.