Como padronizar gráficos sem repetir código

Criar gráficos padronizados usando pipelines com o tidyverse no R não precisa ser uma tarefa tediosa de Ctrl+C / Ctrl+V mudando a variável de interesse a ser plotada no seu código de ggplot2. Isso torna o seu script caótico e ineficiente, além de ser potencialmente mais trabalhoso fazer atualização/manutenção desse código.

Uma maneira mais elegante de criar gráficos padronizados, para um relatório por exemplo, pode ser através da escrita de uma função que generaliza o resultado que se quer alcançar. Vamos supor que você queira gerar gráficos de linha padronizados em um relatório extenso. Cada uma das várias visualizações de dados do seu relatório terá um gráfico de linha do ggplot2 para as n variáveis do seu conjunto de dados. Nesta situação, a criação de uma função se encaixa perfeitamente, pois irá unificar em um único comando tudo o que você precisa fazer para todas as visualizações a serem geradas, sem precisar repetir código.

Em termos mais práticos, um exemplo desta situação pode ser código abaixo, onde demonstramos um exemplo bom (usando boas práticas de programação em R) e um exemplo ruim (repetindo manualmente o código).

 

A diferença é bastante clara e significativa, o que você acha melhor? Ambas opções produzem os mesmos resultados gráficos:

O "pulo do gato" aqui, no caso da criação da função plot_line, é utilizar o operador chamado curly-curly para passar os nomes das colunas do objeto data frame diretamente nos argumentos da função que criamos, usando a sintaxe {{ func_arg }} no corpo da função (neste caso em aes). O trabalho "sujo" de identificar corretamente o nome de coluna passado no argumento da função é feito todo internamente por esse operador.

Esse operador se originou em 2019 no pacote rlang e é bastante utilizado internamente nas funções do tidyverse. Se você quiser entender mais a fundo seu funcionamento sugiro começar por este post do blog do tidyverse.

Se mesmo após este exemplo básico você não se convenceu, dê uma olhada na diferença de performance (execução em milissegundos) dos dois códigos após 1000 execuções:

As inovações do tidyverse são maravilhosas e facilitam o dia a dia do usuário de R. Espero que este tenha sido um exercício que instigue curiosidade em investigar se seus códigos performam bem e seguem boas práticas.

 

________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Como se comportou a Taxa de Participação no Brasil nos últimos anos? Uma Análise com a Linguagem R

O objetivo deste estudo é analisar a evolução da Taxa de Participação no Brasil, contrastando-a com a Taxa de Desocupação e decompondo suas variações para entender os vetores (populacionais e de força de trabalho) que influenciam o comportamento atual do mercado de trabalho. Para isso, utilizamos a linguagem R em todo o processo, desde a coleta e o tratamento das informações até a visualização dos resultados, empregando os principais pacotes disponíveis no ecossistema da linguagem.

Como se comportou a inflação de serviços no Brasil nos últimos anos?

Uma análise econométrica da inflação de serviços no Brasil comparando os cenários de 2014 e 2025. Utilizando uma Curva de Phillips própria e estimativas da NAIRU via filtro HP, investigamos se o atual desemprego nas mínimas históricas repete os riscos do passado. Entenda como as expectativas de inflação e o hiato do desemprego explicam o comportamento mais benigno dos preços atuais em relação à década anterior.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.