Consumindo APIs de dados econômicos e financeiros no R

Dados são armazenados e coletados por meio de diferentes métodos , seja por meio de arquivos de planilhas eletrônicas, textos, banco de dados e até mesmo com a conexão de servidores Web , conhecidos como APIs. Muitos pacotes de coletas de dados criados em R e Python utilizam por trás de suas funções a conexão com APIs de diferente fontes, mas como utilizá-las diretamente? Vamos  criar um exemplo com a plataforma do SICONFI para entendermos melhor a coleta de dados por meio de APIs.

API

APIs é um acrônimo para Application Programming Interface, que é basicamente um software que permite duas aplicações de máquinas diferentes se comunicarem. Esse método é extremamente útil para a conexão de diferentes servidores na Web, possibilitando a disponibilização de dados.

SICONFI

O SICONFI é um sistema da Secretaria de Tesouro Nacional que coleta e disponibiliza as declarações e demonstrativos de dados contábeis das entidades do Brasil.

Primeiramente, é necessário estar a par dos parâmetros que devem ser colocados como entradas para obter os dados dos diversos tipos de demonstrativos. O site http://apidatalake.tesouro.gov.br/docs/siconfi/ fornece detalhadamente quais parâmetros devem ser fornecidos para cada tipo de demonstrativos, bem como a url base para realizar a requisição do API.

Aqui iremos trabalhar como exemplo a Declaração de Contas Anuais (DCA) Anexo I-D do município de Varginha - Minas Gerais, no qual nos fornecerá as Despesas Orçamentárias por Natureza.

Para o DCA, há 3 parâmetros que devem ser inseridos: an_exercicio (Ano de exercício do demonstrativo); no_anexo (Qual anexo do relatório deseja obter) e id_ente (O código IBGE do ente em questão). Sendo an_exercicio e id_ente obrigatórios para esse demonstrativo em questão.

Clube AM

Demonstramos a construção do exercício completo com um vídeo comentado através do Clube AM. Membros do Clube também possuem acesso aos arquivos do código.

É fundamental a utilização dos pacotes a seguir.

Em seguida vamos realizar a chamada da API criando uma URL.

Após isso, devemos realizar a requisição da API usando a função GET do pacote httr, bem como realizar a extração do conteúdo com as funções content e fromJSON dos pacotes httr e jsonlite, respectivamente.

Desta forma podemos obter os dados do DCA Anexo I-D do município de Varginha. O método pode ser replicado para outros anexos e demonstrativos, bem como para qualquer outro Ente do Brasil.

Quer saber mais?

Acompanhe a postagem através do Clube AM. Através dos cursos da nossa trilha de Ciência de Dados para Economia e Finanças.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.