Analisando dados do Spotify no R

Todo ano os cientistas de dados do Spotify criam uma retrospectiva musical dos seus usuários. Essa apresentação é compartilhada por muitas pessoas nas redes sociais, que debatem acerca das suas preferências. A plataforma permite o acesso a alguns destes dados por meio de uma API. Para acessa-la com facilidade, podemos utilizar o pacote {spotifyr}.

Primeiramente, deve ser feito um cadastro no site do Spotify (https://developer.spotify.com/). Assim, podemos obter a chave pessoal para acessar a API. Basta colocar o ID e essa chave da seguinte maneira:

library(tidyverse)
library(spotifyr)
library(ggridges)

Sys.setenv(SPOTIFY_CLIENT_ID = 'xxxxxxxx')
Sys.setenv(SPOTIFY_CLIENT_SECRET = 'xxxxxxx')

access_token <- get_spotify_access_token()

Existem várias funções diferentes que podemos fazer neste pacote. Podemos obter características sonoras, datas de lançamento, popularidade, entre outras coisas. É possível também obter seus próprios dados de consumo. Por exemplo, a função "get_my_saved_albuns", retorna todos os álbuns das músicas que você curtiu. Esta função possui um limite de 50 álbuns, assim como outras semelhantes. Assim é preciso utilizar um loop para obter todos os seus álbuns.

No caso, selecionei os meus álbuns com as variáveis de data de lançamento e popularidade. Com esta categoria, criei uma variável binária para separar os álbuns entre populares e não-populares, utilizando um limite de 50 na escala do aplicativo.

lista = list()

for (i in seq(0,10)){
  x = i*50

  lista[[i+1]] <- get_my_saved_albums(limit = 50, offset = x)

  if (nrow(lista[[i+1]]) < 50){
  break
  }
}

meus_albuns <- bind_rows(lista, .id = "column_label") %>%
select(album.artists, album.name, album.popularity, album.release_date) %>%
mutate(album.release_date = stringr::str_extract(album.release_date, "^.{4}")) %>%
mutate(faixa_popularidade = ifelse(album.popularity > 50,"Populares", "Não-Populares"))

Assim, é possível criar um gráfico para observar o seu gosto em relação aos anos de lançamento.

 


ggplot(meus_albuns) +
geom_histogram(aes(x = album.release_date, fill = faixa_popularidade),stat="count", alpha = 0.8) +
theme_minimal() +
scale_x_discrete(breaks=seq(1969, 2020, 5)) +
scale_fill_brewer(palette = "Dark2") +
ylab("Álbuns na playlist") +
xlab("Ano de lançamento")

 

Outra possibilidade interessante é extrair informações de bandas ou gêneros específicos. Podemos, por exemplo, selecionar a banda Pearl Jam para analisar alguma característica sonora do conjunto. Um dado interessante é observar a chamada "valência" das músicas. Basicamente, a valência descreve a positividade musical de uma canção. Músicas com valência mais altas soam mais positivas.

Assim, selecionamos os álbuns de estúdio da banda para acompanhar a distribuição das músicas pela valência, que parece aumentar ao longo dos anos.

 


PJ <- get_artist_audio_features('Pearl Jam') %>%
mutate(ano_album = paste0(album_release_year, " - ", album_name)) %>%
filter(album_name %in% c("Ten", "Vs.", "Vitalogy", "No Code",
"Yield", "Binaural", "Riot Act",
"Pearl Jam", "Backspacer", "Lightning Bolt",
"Gigaton"))

ggplot(PJ, aes(x = valence, y = ano_album, fill = ano_album)) +
geom_density_ridges(alpha = 0.5, jittered_points = TRUE) +
theme_ridges() +
guides(fill=FALSE,color=FALSE) +
ggtitle("Valência dos álbuns do Pearl Jam")

 

________________________

(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.