Covid-19: o formato da Curva

Ao longo dos últimos dias, tenho publicado nesse espaço alguns posts e exercícios sobre a pandemia do coronavírus. Ontem, a propósito, publiquei o comentário de conjuntura dessa semana com um modelo SIR ajustado aos dados da doença no Brasil. Como é possível observar nesse exercício, o Brasil está no início da transmissão, com um crescimento exponencial dos casos confirmados.

Se olharmos, contudo, para os dados da China, primeiro país exposto à pandemia, a curva de casos confirmados parece seguir um formato logístico. Isso, a propósito, está em linha com a tese de "imunidade de grupo", ou seja, quanto mais pessoas vão sendo expostas ao vírus, mais pessoas ganham imunidade e a contaminação passa a desacelerar.

As curvas em formato de sino que têm sido divulgadas por aí, nesse aspecto, derivam justamente do modelo SIR, onde as pessoas são "compartimentadas" nos grupos de suscetíveis, infectados e recuperados. Ou seja, as pessoas saem de um para outro grupo, daí o formato da curva.

O formato logístico, por seu turno, não significa que devemos simplesmente abandonar as medidas de distanciamento social. Isso porque, quanto mais pessoas forem expostas ao vírus, mais casos graves serão registrados, o que tende a congestionar o sistema de saúde, como temos visto na Itália.

A pergunta de um trilhão de reais, portanto, é onde é o "limite superior" da curva logística.

(*) Isso e muito mais você aprende no nosso Curso de Microeconometria usando o R.

___________


Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o hiato do produto no Brasil?

Entender o hiato do produto é fundamental para avaliar o ritmo da economia e as pressões inflacionárias no Brasil. Neste artigo, mostramos como estimar essa variável não observável a partir dos dados do PIB, explorando diferentes metodologias — de regressões simples a modelos estruturais — e discutindo as limitações e incertezas que cercam cada abordagem.

Determinantes do Preço do Ouro: VAR + Linguagem R

Este artigo realiza uma análise econométrica para investigar os determinantes dinâmicos do preço do ouro. Utilizando um modelo Vetorial Autorregressivo (VAR) em R, examinamos o impacto de variáveis como o dólar (DXY), a curva de juros e a incerteza global. Os resultados mostram que um fortalecimento inesperado do dólar tem um efeito negativo e significativo no curto prazo sobre os retornos do ouro, embora a maior parte de sua variância seja explicada por fatores intrínsecos ao seu próprio mercado.

Existe correlação entre vagas de emprego e o S&P 500?

O que explica a divergência entre S&P 500 e vagas de emprego? Seria o impacto da IA ou a política monetária? Utilizando um análise dados e modelo VAR e testes de causalidade de Granger usando a linguagem de programação R, investigamos a relação e o motivo por trás da "boca de jacaré".

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.