[Dicas de R] Regressão Múltipla

Em post anterior das Dicas de R, vimos o modelo de regressão simples, onde y pode ser explicado por uma única variável x. O problema básico desse tipo de análise é que ela faz uma suposição bastante forte, qual seja, que x não está correlacionado com o erro, dificultando a aplicação da condição ceteris paribus. A análise de regressão múltipla, por outro lado, é mais receptiva a esse tipo de condição, uma vez que ela permite que controlemos outros fatores que afetam y, adicionando os mesmos na equação. Assim, por suposto, se queremos explicar y, podemos utilizar k variáveis, como abaixo:

(1)   \begin{align*} y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + ... + \beta_k x_k + u,  \end{align*}

onde \beta_0 é o intercepto, \beta_k é o parâmetro associado a x_k. De modo a obter uma estimativa para 1, devemos observar que

(2)   \begin{align*} E(u|x_1, x_2, ..., x_k) = 0. \end{align*}

Isto é, que todos os fatores no termo de erro não observado u sejam não correlacionados com as variáveis explicativas. De modo a obter estimativas para os \beta_k parâmetros, é possível recorrer ao método de mínimos quadrados ordinários. Isto é, dado

(3)   \begin{align*} \hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + ... + \hat{\beta_k} x_k, \end{align*}

onde \hat{\beta_k} é a estimativa de \beta_k, o método de MQO escolhe as estimativas \hat{\beta_k} que minimizam a soma dos quadrados dos resíduos:

(4)   \begin{align*} \sum_{i=1}^{n} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik})^2. \end{align*}

O problema acima pode ser resolvido por meio de cálculo multivariado, de onde obtemos as condições de primeira ordem

(5)   \begin{align*} \sum_{i=1}^{n} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{i1} (y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{i2}(y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0 \nonumber \\ \sum_{i=1}^{n} x_{ik}(y_i - \hat{\beta_0} - \hat{\beta_1} x_{i1} - ... - \hat{\beta_k} x_{ik}) = 0, \nonumber \end{align*}

ou simplesmente, E(u) = 0 e E(x_j u) = 0.

# Interpretação da equação de regressão de MQO

Suponha que tenhamos

(6)   \begin{align*} \hat{y} = \hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2. \end{align*}

O intercepto \beta_0 será então o valor previsto de y quando x_1 = x_2 = 0. Já as estimativas \hat{\beta_1} e \hat{\beta_2} devem ser interpretadas como efeito parcial ou simplesmente ceteris paribus. Isto é,

(7)   \begin{align*} \Delta \hat{y} = \hat{\beta_1} \Delta x_1 + \hat{\beta_2} \Delta x_2, \nonumber \end{align*}

de modo que obtemos a variação prevista em y dadas as variações em x_1 e x_2. Em particular, quando x_2 é mantido fixo, de modo que \Delta x_2 = 0, teremos

(8)   \begin{align*} \Delta \hat{y} = \hat{\beta_1} \Delta x_1. \nonumber \end{align*}

Ou, simplesmente,

(9)   \begin{align*} \frac{\partial \hat{y}}{\partial \hat{x_1}} = \hat{\beta_1}, \nonumber \end{align*}

onde \hat{\beta_1} irá medir o efeito da variação de x_1 em y, mantido x_2 constante.

# Exemplo: equação do salário-hora

De modo a ilustrar, vamos considerar o exemplo 3.2 de Wooldridge (2003), em que o mesmo utiliza o conjunto de dados wage1, disponível no pacote wooldridge. Ele pode ser acessado como abaixo.


library(wooldridge)
data(wage1)

modelo = lm(log(wage) ~ educ+exper+tenure, data=wage1)

E abaixo, o nosso modelo.

Dependent variable:
log(wage)
educ 0.092***
(0.007)
exper 0.004**
(0.002)
tenure 0.022***
(0.003)
Constant 0.284***
(0.104)
Observations 526
R2 0.316
Adjusted R2 0.312
Residual Std. Error 0.441 (df = 522)
F Statistic 80.391*** (df = 3; 522)
Note: *p<0.1; **p<0.05; ***p<0.01

De modo a obter a seguinte reta de regressão para o log do salário-hora

(10)   \begin{align*} \hat{log(wage)} = 0.284 + 0.092 educ + 0.0041 exper + 0.022 tenure. \end{align*}

De onde se conclui, por exemplo, que o aumento de um ano na educação formal equivale a um aumento de 9.2% no salário-hora, mantidos exper e tenure fixos.

Quer aprender mais sobre econometria? Conheça nosso Curso de Introdução à Econometria usando o R.

_______________________

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. Editora Cengage.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando um Dashboard de análise de Ações no Python

Um Dashboard é um painel de controle que consolida uma variedade de informações sobre um determinado objeto de estudo em um ou mais painéis. Ele simplifica significativamente o processo de análise de dados, oferecendo uma visão global e fácil de entender. Uma maneira simples de construir um Dashboard para acompanhar uma ação específica é utilizando duas ferramentas: Quarto e Python. Neste post, mostramos o resultado da criação de um Dashboard de Ação.

Analisando séries temporais no Python e esquecendo de vez o Excel

Séries temporais representam uma disciplina extremamente importante em diversas áreas, principalmente na economia e na ciência de dados. Mas, afinal, como lidar com esses dados que se apresentam ao longo do tempo? Neste exercício, demonstraremos como compreender uma série temporal e como o Python se destaca como uma das melhores ferramentas para analisar esse tipo de dado.

Cálculo do Retorno Econômico de uma Política Pública

Como podemos traduzir os efeitos de uma política pública para valores monetários? Essa é uma tarefa árdua que requer algumas premissas, entretanto, com métodos bem definidos, é possível obter estimativas precisas dos ganhos e os gastos de uma política pública.

Neste exercício, demonstramos tal método usando a política hipotética "Mãe Paranense”, um conjunto de ações que visam reduzir a mortalidade materna e infantil no estado. Usamos a linguagem R como ferramenta para analisar os dados.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.