Exportando data frames do R para planilhas

Imagine-se na seguinte situação: o seu chefe lhe pede uma análise de um conjunto de dados "sujos", que requerem um enorme trabalho de limpeza, além de que se faça cálculos complexos. Você, inteligente e inovador, pretende realizar todo o trabalho com o R, já que a linguagem permite que você faça o trabalho rapidamente. Há um porém, o seu chefe ainda não conhece muito bem a linguagem, e também necessita passar as informações para outros setores da empresa, e por isso, pede que o conjunto de dados seja entregue em uma planilha. Neste texto, iremos mostrar como é possível resolver esse problema, exportando data frames para planilhas utilizando os pacote {XLConnect} e {googlesheets4}.

# Carrega os pacotes necessários
library(googlesheets4)
library(XLConnect)
library(tidyverse)

Primeiro, iremos mostrar como exportar uma data frame para um arquivo .xlsx. O primeiro passo é carregar o arquivo
de formato .xlsx, para que seja feita a conexão com o R. Veja que é possível conectar a uma planilha já existente, utilizando a função loadWorkbook(), passando nome do arquivo em questão no primeiro argumento, bem como criar um arquivo direto do R, passando o argumento create = TRUE. Fazemos isso tudo salvando em um objeto.

Logo em seguida, realizamos a criação de páginas dentro da planilha, no qual iremos colocar nossos dados. Podemos fazer isso com a função createSheet(), em que passamos o objeto que conecta com o arquivo .xlsx, e o nome da página. Após isso, utilizamos a função writeWorksheet() para enfim escrever os dados na planilha. Veja que podemos escolher as coordenadas em que os dados estarão guardados usando os argumentos startRow e startCol, que por padrão começam na linha 1, coluna 1.

Por fim, salvamos o arquivo utilizando a função saveWorkbook().


# Cria um arquivo .xlsx
flowers <- loadWorkbook("iris.xlsx", create = TRUE)

# Cria uma página no arquivo
createSheet(flowers, "iris1")

# Escreve na página criada
writeWorksheet(flowers, iris, sheet = "iris1", startRow = 1, startCol = 1)

# Salva o arquivo
saveWorkbook(flowers)

Outro pacote muito útil para transformar data frames em planilhas é o {googlesheets4], que justamente conecta os dados em uma planilha no Google Planilhas.

Para isso, é necessário que o pacote tenha permissão da sua conta Google para realizar as mudanças. Para isso, utiliza-se a função gs4_auth(), colocando seu e-mail de uso.

Em seguida, cria-se a planilha utilizando a função gs4_create(), passando o nome da planilha como primeiro argumento, e o data frame que podem ser utilizados.

Em caso de alterações, podemos escrever por cima da planilha utilizando a função write_sheet(). O argumento ss é usado para conectar a planilha, podemos usar tanto a url, quanto o id salvo dentro do argumento iris_gg.

## Google Sheets

# Conecta a conta do Google, para garantir a permissão
gs4_auth(email = "luiz@exemplo.com")

# Cria uma planilha dentro do Google Planilhas
iris_gg <- gs4_create("flowers", sheets = iris)

# Escreve por cima do arquivo criado anteriormente
write_sheet(data = filter(iris, Species == "setosa"),
            ss = "1V2722XxqQHbi_9V_bi5LAxwEHrQTXHCW4OnpyjjxiQg",
            sheet = "iris")

Serve como um bom quebra-galho, não?

________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Quais são as ferramentas de IA?

Um aspecto crucial dos Agentes de IA é a sua capacidade de tomar ações, que acontecem por meio do uso de Ferramentas (Tools). Neste artigo, vamos aprender o que são Tools, como defini-las de forma eficaz e como integrá-las ao seu Agente por meio da System Prompt. Ao fornecer as Tools certas para o seu Agente — e ao descrever claramente como essas Tools funcionam — você pode aumentar drasticamente o que sua IA é capaz de realizar.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.