Google Trends no R: o pacote gtrendsR

Com o avanço da pandemia do coronavírus, muitas consultorias e departamentos de research têm avançado na busca de dados de "alta frequência" para quantificar os seus efeitos sobre a economia. Os dados do google como o Google Trends e de geolocalização têm sido cada vez mais utilizados de forma a quantificar os efeitos da peste sobre o nível de atividade.

Como já tratei várias vezes nesse espaço, os dados do google podem ser inclusive utilizados para forecasting de variáveis econômicas. Um exemplo dessa abordagem é visto na edição 68 do Clube do Código, que busca replicar o paper The predictive power of google search in forecasting US unemployment, publicado no International Journal of Forecasting, para o Brasil.

Nesse paper e no exercícioutilizamos a pesquisa pela palavra "emprego" como uma das variáveis que explicariam o avanço da taxa de desemprego ao longo do tempo.

Na situação atual, contudo, talvez seja interessante pesquisar por outros termos, como, por exemplo, "seguro desemprego". Podemos para isso utilizar o pacote gtrendsR para fazer a pesquisa e os pacotes tidyverse para tratar e visualizar os dados.

Uma dica aqui é que a versão disponível no CRAN não rodou para mim. Tive que instalar a versão disponível no github. Para isso, você pode rodar a linha de comando abaixo.


if (!require("devtools")) install.packages("devtools")
devtools::install_github("PMassicotte/gtrendsR")

Uma vez instalado o pacote, podemos pegar tanto as buscas por "emprego" quanto "seguro desemprego", como no código abaixo.


data_gtrends = gtrends(keyword = c("seguro desemprego", 'emprego'),
geo = "BR", time='all', onlyInterest=TRUE)

De posse dos dados, nós selecionamos e mensalizamos as buscas por "seguro desemprego".


seguro_desemprego = data_gtrends$interest_over_time %>%
filter(keyword == 'seguro desemprego') %>%
mutate(mes = floor_date(date, "month")) %>%
group_by(mes) %>%
summarize(interesse = mean(hits)) %>%
mutate(date = as.Date(mes)) %>%
select(date, interesse)

Por fim, podemos gerar um gráfico com o ggplot2 como abaixo.

Como esperado, há um forte aumento em abril nas pesquisas por "seguro desemprego".

__________________

(*) Aprenda R em nosso Curso de Introdução ao R para Análise de Dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como criar um Agente de IA coletor de dados

A tecnologia de agentes de IA está democratizando o acesso e a manipulação de dados econômicos complexos, tornando-a acessível mesmo para aqueles sem experiência em programação. Neste post discutimos a criação de agentes de IA para coletar dados econômicos brasileiros usando linguagem natural, como "Qual é a expectativa do IPCA para 2025?".

Como Criar um Agente Analista para Dados da Inflação com LangGraph

Este post mostra como automatizar a análise da inflação brasileira com o uso de agentes inteligentes. Utilizando o LangGraph, integramos dados do IPCA, núcleos de inflação e grupos do índice para criar um sistema capaz de gerar análises econômicas automatizadas com base em consultas em linguagem natural.

Como Criar um Agente para Análise da Atividade Econômica com LangGraph

Este post mostra como automatizar a análise da atividade econômica brasileira com agentes inteligentes. Utilizando o framework LangGraph e dados do IBGE e Banco Central, construímos um sistema capaz de gerar respostas analíticas a partir de perguntas em linguagem natural, unindo automação de consultas SQL e interpretação econômica.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.