Hackeando o R: Fazendo análise de fatores no R

No Hackeando o R de hoje, vamos mostrar como fazer a análise de fatores no R. A ideia por trás dessa metodologia é tentar identificar a relações não-observáveis em amostras de variáveis observáveis (como uma correlação). Esse método é comum em psicometria, logo para o exemplo utilizaremos o pacote psych, que possui ferramentas específicas para isso. Também utilizaremos o pacote GPArotation, que é útil para a análise de fatores. Diferentemente do PCA, onde é pressuposto que toda a variância é comum entre as variáveis, aqui supomos que há alguma variância em cada observação que é única a ela, através de fatores que são específicos, ou erros. Com isso, vamos fazer um exemplo usando o dataset attitude, que já vem no R base.

Primeiramente, vamos carregar os pacotes que iremos utilizar:

library(psych)
library(GPArotation)

Para criarmos uma análise simples, podemos iniciar identificando o possível número de fatores que explicam a variação comum das observações, utilizando um gráfico scree. Sua interpretação é parecida com a do PCA: estamos buscando uma dobra brusca no gráfico (como um cotovelo), indicando que a passagem de n fatores para n+1 traz pouca informação nova. Isso pode ser feito com a função fa.parallel, que gera o gráfico e algumas informações adicionais. Como podemos ver abaixo, utilizar 2 fatores parece adequado.

fa.parallel(attitude, fm = "ml", fa = "fa")

Com isso, podemos rodar o modelo (cujos detalhes serão omitidos por hoje) usando a função fa(). Dois argumentos merecem atenção: o rotate = "oblimin" indica que permitimos que os fatores possuam correlação, enquanto que fm = "ml" faz a estimação através de máxima verossimilhança.

attitude_fa <- fa(attitude, nfactors = 2,
rotate = "oblimin", fm = "ml")

attitude_fa
fa.diagram(attitude_fa, simple = FALSE)

O diagrama gerado pela fa.diagram() mostra que os dois fatores gerados possuem correlação com características observáveis distintas. O ML1 é correlacionado com learning, raises e advance, o que pode ser interpretado como as oportunidades de carreira para funcionários da empresa. O ML2 tem correlação com todas as variáveis exceto advance e critical, o que pode ser visto como o bem-estar geral dos funcionários. É importante notar que essa é apenas uma interpretação: o objetivo da análise é justamente identificar fatores que explicam variações comuns, e tentar descrevê-los de uma forma causal.

________________________
(*) Para entender mais sobre análises estatísticas, confira nosso Curso de Estatística usando R e Python.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.