Hackeando o R: analisando modelos com o tidymodels

No Hackeando o R de hoje, vamos continuar nossa exposição do pacote tidymodels, a partir daonde paramos no nosso post de semana passada. Para resumir, o método básico, chamado de workflow, depende apenas de uma receita, que descreve o processamento de dados, e um parsnip, que descreve o modelo que queremos utilizar e seus parâmetros.

Após realizarmos os passos acima, podemos tentar verificar a qualidade do nosso modelo através da reamostragem. Vamos começar com um exemplo da qualidade de imagens de células, do pacote modeldata. Os dados possuem uma classificação, que indica se a observação é boa ou ruim para o objetivo final do estudo. Como a amostra total é muito grande para ser classificada manualmente, nosso trabalho é montar um modelo que preveja corretamente a classificação a partir de variáveis mensuráveis, dada a amostra.

library(modeldata)
library(tidymodels)

data(cells)

Para iniciarmos, devemos separar nossa amostra em uma partição de treinamento e teste. Isso é feito facilmente pela função initial_split(). Note que removemos a coluna case, que não é interessante para nós, diretamente dentro da função, com linguagem do tidyverse. Ademais, o argumento strata é importante: como temos muito mais dados ruins do que bons, uma partição aleatória poderia conter dados ruins demais no treino ou no teste, dificultando a estimação. Ao utilizar o argumento, garantimos que ambas as partes possuam proporções 'razoáveis' de cada classe.

set.seed(123)

cell_split <- initial_split(cells %>% select(-case),
strata = class)

cell_train <- training(cell_split)
cell_test <- testing(cell_split)

Para a modelagem, faremos um modelo de random forest. Não entraremos nos detalhes de seu funcionamento, pois já falamos sobre esse modelo em um post mais antigo. Dentro do ambiente do tidymodels, podemos facilmente criar a random forest usando o pacote ranger:

rf_mod =
rand_forest(trees = 1000) %>%
set_engine("ranger") %>%
set_mode("classification")

rf_fit =
rf_mod %>%
fit(class ~ ., data = cell_train)

Após treinar o modelo, podemos testar ele com as funções do pacote yardstick. Abaixo, calculamos a acurácia das previsões:

rf_testing_pred =
predict(rf_fit, cell_test) %>%
bind_cols(predict(rf_fit, cell_test, type = "prob")) %>%
bind_cols(cell_test %>% select(class))

rf_testing_pred %>%
accuracy(truth = class, .pred_class)

Como podemos ver, o modelo é razoável, porém pode melhorar. Para isso, vamos utilizar a reamostragem, fazendo validação cruzada. O método é simples: criamos os folds, geramos um novo workflow, e o informamos que é para fazer o fit sobre cada um dos folds.

folds = vfold_cv(cell_train, v = 10)

rf_wf =
workflow() %>%
add_model(rf_mod) %>%
add_formula(class ~ .)

rf_fit_rs =
rf_wf %>%
fit_resamples(folds)

Após isso, podemos utilizar a função collect_metrics() para verificar o resultado dos modelos sobre cada fold. O resultado mostra que nosso teste inicial acaba sendo sim um bom previsor.


collect_metrics(rf_fit_rs)

 .metric .estimator mean n std_err .config 
<chr> <chr> <dbl> <int> <dbl> <chr> 
1 accuracy binary 0.833 10 0.00971 Preprocessor1_Model1
2 roc_auc binary 0.906 10 0.00901 Preprocessor1_Model1

________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.