Hackeando o R: visualizando conjuntos com UpSet

No Hackeando o R de hoje, vamos mostrar como fazer a visualização de dados separados em diversos grupos, através de gráficos UpSet. Quando temos dados pertencentes a múltiplos grupos, a visualização do tamanho e propriedades de cada interseção cresce rapidamente com o número de grupos. Ferramentas mais comuns de visualização de interseções, como diagramas de Venn, podem criar representações bonitas com múltiplos grupos, porém extrair informações deles acaba sendo complicado. Abaixo, um exemplo de um diagrama de Venn complicado:

Com isso, vamos introduzir a visualização de UpSet. O conceito é definido pela transformação de interseções em uma matriz que representa cada combinação dos conjuntos originais. Além das interseções, a ferramenta também permite a definição de outras agregações, gerando visualizações mais complexas dos dados, conforme a necessidade do pesquisador. Vamos então mostrar aqui como utilizar o pacote ComplexUpset, disponível no CRAN.

library(ggplot2)
library(ComplexUpset)

Iremos utilizar como exemplo os dados de filmes disponíveis no pacote ggplot2movies.


filmes = as.data.frame(ggplot2movies::movies)
filmes = na.omit(filmes)

Para gerar a versão básica de uma visualização UpSet, precisamos dos dados, e de um vetor que indica quais são as categorias. Então, basta utilizar a função upset():


generos = colnames(filmes)[18:24]

upset(filmes, generos, name='gênero', width_ratio=0.1, min_size = 10, set_sizes = FALSE)

Além das contagens, podemos também utilizar o ggplot para apresentar propriedades de cada um dos subgrupos:


upset(
filmes,
generos,
annotations = list(
'Duração'=list(
aes=aes(x=intersection, y=length),
geom=geom_boxplot(na.rm=TRUE)
),
'Nota'=(
ggplot(mapping=aes(y=rating))
+ geom_jitter(aes(color=log10(votes)), na.rm=TRUE)
+ geom_violin(alpha=0.5, na.rm=TRUE)
+ scale_alpha_continuous(label = 'a')
),
'Orçamento'=upset_annotate('budget', geom_boxplot(na.rm=TRUE))
),
min_size=10,
width_ratio=0.1,
set_sizes = FALSE
)


________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Aplicando o Time Series Transformer para prever inflação (IPCA)

Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".

Análise do Payroll norte-americano com Python

O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.

O papel da credibilidade do Banco Central na desinflação da economia

O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.