Hackeando o R: visualizando conjuntos com UpSet

No Hackeando o R de hoje, vamos mostrar como fazer a visualização de dados separados em diversos grupos, através de gráficos UpSet. Quando temos dados pertencentes a múltiplos grupos, a visualização do tamanho e propriedades de cada interseção cresce rapidamente com o número de grupos. Ferramentas mais comuns de visualização de interseções, como diagramas de Venn, podem criar representações bonitas com múltiplos grupos, porém extrair informações deles acaba sendo complicado. Abaixo, um exemplo de um diagrama de Venn complicado:

Com isso, vamos introduzir a visualização de UpSet. O conceito é definido pela transformação de interseções em uma matriz que representa cada combinação dos conjuntos originais. Além das interseções, a ferramenta também permite a definição de outras agregações, gerando visualizações mais complexas dos dados, conforme a necessidade do pesquisador. Vamos então mostrar aqui como utilizar o pacote ComplexUpset, disponível no CRAN.

library(ggplot2)
library(ComplexUpset)

Iremos utilizar como exemplo os dados de filmes disponíveis no pacote ggplot2movies.


filmes = as.data.frame(ggplot2movies::movies)
filmes = na.omit(filmes)

Para gerar a versão básica de uma visualização UpSet, precisamos dos dados, e de um vetor que indica quais são as categorias. Então, basta utilizar a função upset():


generos = colnames(filmes)[18:24]

upset(filmes, generos, name='gênero', width_ratio=0.1, min_size = 10, set_sizes = FALSE)

Além das contagens, podemos também utilizar o ggplot para apresentar propriedades de cada um dos subgrupos:


upset(
filmes,
generos,
annotations = list(
'Duração'=list(
aes=aes(x=intersection, y=length),
geom=geom_boxplot(na.rm=TRUE)
),
'Nota'=(
ggplot(mapping=aes(y=rating))
+ geom_jitter(aes(color=log10(votes)), na.rm=TRUE)
+ geom_violin(alpha=0.5, na.rm=TRUE)
+ scale_alpha_continuous(label = 'a')
),
'Orçamento'=upset_annotate('budget', geom_boxplot(na.rm=TRUE))
),
min_size=10,
width_ratio=0.1,
set_sizes = FALSE
)


________________________
(*) Para entender mais sobre a linguagem R e suas ferramentas, confira nosso Curso de Introdução ao R para análise de dados.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Medir o Ciclo das Concessões de Crédito usando Python

Este artigo apresenta uma análise quantitativa da relação entre o ciclo de concessões de crédito, a atividade econômica e a política monetária no Brasil. Utilizando a linguagem Python, o estudo aplica técnicas de decomposição de séries temporais (X13-ARIMA e Filtro HP) para isolar os componentes cíclicos dos dados. Os resultados da modelagem econométrica confirmam a pro-ciclicidade do crédito em relação ao hiato do produto e sua sensibilidade às variações no hiato da taxa de juros real.

Choque de juros e renda em bens duráveis e não duráveis usando Python

Este artigo analisa a dinâmica do consumo no Brasil utilizando Python e modelos de Vetores Autorregressivos (VAR). Ao segregar bens duráveis e não duráveis, o estudo quantifica a sensibilidade a choques de juros e renda. Criamos todo o processo através do ciclo de dados: coleta, tratamento, análise de dados, modelagem e apresentação dos resultados, tudo automatizado usando a linguagem Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.