Estruturas de dados no R

Para tirar o melhor proveito da linguagem R, você precisará de um bom entendimento dos tipos e estruturas básicas de dados existentes e como manipulá-los no seu dia a dia. Portanto, antes de começar a apenas executar código e se frustrar (e perder tempo) por não entender o que são essas coisas na tela, inicie compreendendo os fundamentos básicos de estruturas de dados.

Estruturas de dados são muito importantes para entender porque é o que forma os objetos que você utilizará no dia a dia no R. Manipulação de objetos é uma das fontes mais comuns de frustração para iniciantes. E no R tudo é um objeto, portanto, vamos entendê-los.

Tipos de dados

Existem 5 tipos básicos de dados no R. Os elementos desses tipos de dados podem ser combinados para formar estruturas de dados, como vetores atômicos. Quando chamamos um vetor de atômico, queremos dizer que o vetor contém apenas dados de um único tipo de dados. Abaixo estão exemplos de vetores de atômicos e seus tipos:

  • character: "fernando", "economia"
  • numeric: 7, 22.3
  • integer: 5L (L serve para armazenar como inteiro no R)
  • logical: TRUE, FALSE
  • complex: 1+4i

Todos os elementos de um vetor atômico devem ser do mesmo tipo, portanto, quando você tentar combinar tipos diferentes, eles serão convertidos ao tipo mais flexível. Os tipos do menos ao mais flexível são: logicalintegernumeric e character.

Existem diversas funções para obter informações de vetores e outros objetos, por exemplo:

  • class() - que tipo de objeto é (alto nível)?
  • typeof() - qual é o tipo de dados do objeto (baixo nível)?
  • length() - qual é o tamanho (nº de elementos) do objeto?
  • attributes() - tem algum metadado/atributo?

Exemplos:


class("fernando")

# [1] "character"
typeof(7)

# [1] "double"
length(7L)

# [1] 1
attributes(TRUE)

# NULL

Estruturas de dados

No R existem muitas estruturas de dados. As nativas da linguagem incluem:

  • atomic vector
  • list
  • matrix
  • data frame
  • array

Vamos agora verificar com exemplos simples como criar cada uma dessas estruturas.

Vetores atômicos

Os vetores atômicos são geralmente criados com a função c(), abreviação de "combine":


c("fernando", "economia") # character

# [1] "fernando" "economia"
c(7, 22.3, 1:5) # numeric

# [1] 7.0 22.3 1.0 2.0 3.0 4.0 5.0
c(5L, 7L, 9L) # integer

# [1] 5 7 9
c(TRUE, FALSE, T, F) # logical

# [1] TRUE FALSE TRUE FALSE

Listas

Listas são diferentes de vetores atômicos porque seus elementos podem ser de qualquer tipo, incluindo listas. Ou seja, você pode pensar em listas como se fossem "contêineres" de dados. Podemos criar listas usando a função list():


list(1:5, "fernando", c(TRUE, FALSE), list("elemento de outra lista"))

# [[1]]
# [1] 1 2 3 4 5
#
# [[2]]
# [1] "fernando"
#
# [[3]]
# [1] TRUE FALSE
#
# [[4]]
# [[4]][[1]]
# [1] "elemento de outra lista"

Matrizes

Matrizes são comumente usadas como parte da maquinaria matemática da estatística, representando uma estrutura de duas dimensões: com n x m linhas e colunas. Podem ser criadas com a função matrix():


matrix(1:6, nrow = 2, ncol = 3) # matriz 2x3

# [,1] [,2] [,3]
# [1,] 1 3 5
# [2,] 2 4 6

Data frames

O data frame é a estrutura mais comum para armazenar dados no R e, se usado sistematicamente, facilita a análise de dados. Por trás das cortinas, um data frame é uma lista de vetores de igual tamanho e isso o torna uma estrutura bidimensional, de modo que compartilha propriedades de matrizes e listas.

Podemos criar um data frame usando data.frame(), que recebe vetores nomeados como entrada:


data.frame(id = c("a", "b", "c"), y = 1:3, x = 3:1)

# id y x
# 1 a 1 3
# 2 b 2 2
# 3 c 3 1

Saiba mais

Estes foram alguns exemplos básicos de estruturas e tipos de dados e funcionamento geral no R. Há muito mais a ser explorado sobre o assunto! Para se aprofundar confira o curso R e Python para Economistas.

Referências

Wickham, H. (2019). Advanced R. CRC press.

 

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Estamos em pleno emprego no mercado de trabalho?

Este artigo investiga se o mercado de trabalho brasileiro atingiu o nível de pleno emprego, utilizando uma estimativa da NAIRU (Non-Accelerating Inflation Rate of Unemployment) baseada na metodologia de Ball e Mankiw (1997). Através de uma modelagem em Python que unifica dados históricos da PME e PNAD Contínua com as expectativas do Boletim Focus, comparamos a taxa de desocupação corrente com a taxa neutra estrutural. A análise visual e quantitativa sugere o fechamento do hiato de desemprego, sinalizando potenciais pressões inflacionárias. O texto detalha o tratamento de dados, a aplicação do Filtro Hodrick-Prescott e discute as vantagens e limitações da metodologia econométrica adotada.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.