Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.
Esse exercício é uma continuação do exercício “Usando IA para prever o consumo de energia no Brasil com Python”.
Publicado em: 25/03/2024
Autor: Luiz Henrique Barbosa Filho
Como podemos realizar previsões para várias séries temporais simultaneamente? Para abordar essa questão, empregamos a biblioteca MLForecastdo Python. Esta biblioteca disponibiliza uma variedade de modelos e funcionalidades para realizar previsões em séries temporais utilizando técnicas de aprendizado de máquina. Demonstramos sua aplicação ao prever as curvas de energia horária em quatro regiões distintas do Brasil.
Neste exercício, exploramos a previsão de séries temporais utilizando o Temporal Fusion Transformer (TFT). O TFT é uma arquitetura de Deep Learning baseada em mecanismos de atenção, desenhada especificamente para lidar com múltiplas variáveis e horizontes de previsão longos, mantendo a interpretabilidade — uma característica frequentemente ausente em modelos de "caixa-preta".
O Payroll norte-americano é o termômetro da economia global. No post de hoje, mostro como analisar esse indicador usando Python e as bibliotecas Pandas e Plotnine. Saia do básico e aprenda a visualizar a geração de empregos nos EUA de forma profissional.
O objetivo deste trabalho é mensurar a credibilidade da política monetária brasileira através de diferentes métricas e verificar empiricamente se uma maior credibilidade contribui para a redução da inflação. Realizamos a modelagem econométrica usando o pacote {systemfit} disponível na linguagem. Ao fim, criamos um relatório reprodutível com a combinação Quarto + R.
Boletim AM
Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!