Analisando a despesa com energia elétrica por faixa de renda

Como já mencionado no comentário de conjuntura desta semana, a crise hídrica tem levado a um aumento do risco de desabastecimento energético no país. Os efeitos econômicos disso podem ser bastante graves, dado que o aumento da tarifa pode fortalecer a alta da inflação. Já uma piora do cenário poderia levar a um racionamento, como em 2001, impactando diretamente na recuperação econômica atual.

Além disso, um impacto menos comentado do aumento do preço da energia é o efeito distributivo.  O gasto com energia ocupa muito mais espaço no orçamento das pessoas com renda mais baixa. Assim, aumentos tendem a ser mais danosos a essa parte da população. Podemos ver isso utilizando os dados da Pesquisa de Orçamentos Familiares (POF-17/18) do IBGE.

Para extrair os dados, utilizaremos o pacote {sidrar}. Além do gasto com energia, também selecionamos alguns outros tipos de despesa, para comparação.


library(tidyverse)
library(sidrar)

pof = get_sidra(6715, 
period = "all", 
variable = 1204, 
classific = c("C12190","C339"), 
category = list(c(8018,103561,103574,
103585,103618, 103539), 
c(47558, 47559,47560,
47561,47562,47563,
47564))) %>%
mutate(`Tipos de despesa` = gsub("[[:punct:]]|[[:digit:]]", "", `Tipos de despesa`)) %>%
rename("classes" = `Classes de rendimento total e variação patrimonial mensal familiar`)

Assim, podemos construir o gráfico com a porcentagem de gastos com eletricidade pelo total de despesas.

 


ggplot(subset(pof, pof$`Tipos de despesa` == "Energia elétrica"),
mapping = aes(x = factor(classes,
levels=c("Até 1.908 Reais", 
"Mais de 1.908 a 2.862 Reais", 
"Mais de 2.862 a 5.724 Reais", 
"Mais de 5.724 a 9.540 Reais", 
"Mais de 9.540 a 14.310 Reais", 
"Mais de 14.310 a 23.850 Reais",
"Mais de 23.850 Reais")),
y = Valor,
fill = factor(classes,
levels=c("Até 1.908 Reais", 
"Mais de 1.908 a 2.862 Reais", 
"Mais de 2.862 a 5.724 Reais", 
"Mais de 5.724 a 9.540 Reais", 
"Mais de 9.540 a 14.310 Reais", 
"Mais de 14.310 a 23.850 Reais",
"Mais de 23.850 Reais")))) + 
geom_bar(stat='identity',
position="dodge") +
labs(fill="Faixa de renda") +
theme_minimal() +
scale_fill_brewer(palette = "RdBu") +
ylab("Porcentagem da despesa total") +
geom_text(aes(x = classes, label=Valor), vjust=-0.5, color="black", size=5) +
ggtitle("Despesa com eletricidade por faixa de renda") +
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank())

Portanto, para famílias com renda de até 1.908 reais, o gasto com energia elétrica corresponde a 4.4% da despesa total. Já para famílias com mais de 23.850 reais de renda, esse valor corresponde a apenas 0.9%.

Além disso, iremos plotar o mesmo gráfico com os seguintes tipos de despesa: Alimentação, Saúde, Aumento do ativo (investimentos), Educação e Transporte.


ggplot(subset(pof, pof$`Tipos de despesa` != "Energia elétrica"),
mapping = aes(x = `Tipos de despesa`,
y = Valor,
fill = factor(classes,
levels=c("Até 1.908 Reais", 
"Mais de 1.908 a 2.862 Reais", 
"Mais de 2.862 a 5.724 Reais", 
"Mais de 5.724 a 9.540 Reais", 
"Mais de 9.540 a 14.310 Reais", 
"Mais de 14.310 a 23.850 Reais",
"Mais de 23.850 Reais")))) + 
geom_bar(stat='identity',
position="dodge") +
labs(fill="Faixa de renda") +
theme_minimal() +
scale_fill_brewer(palette = "RdBu") +
ylab("Porcentagem da despesa total") +
ggtitle("Despesa com outras categorias por faixa de renda")

Este gráfico mostra que o mesmo padrão ocorre para os gastos com alimentação. Entretanto, como o esperado, investimentos, educação e transporte apresentam a relação inversa.

 

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como planejar um pipeline de previsão macroeconômica: da coleta ao dashboard

Montar um pipeline de previsão macroeconômica não é apenas uma tarefa técnica — é um exercício de integração entre dados, modelos e automação. Neste post, apresento uma visão geral de como estruturar esse processo de ponta a ponta, da coleta de dados até a construção de um dashboard interativo, que exibe previsões automatizadas de inflação, câmbio, PIB e taxa Selic.

Coletando e integrando dados do BCB, IBGE e IPEA de forma automatizada

Quem trabalha com modelagem e previsão macroeconômica sabe o quanto é demorado reunir dados de diferentes fontes — Banco Central, IBGE, IPEA, FRED, IFI... Cada um com sua API, formato, frequência e estrutura. Esse gargalo de coleta e padronização consome tempo que poderia estar sendo usado na análise, nos modelos ou na comunicação dos resultados.

Foi exatamente por isso que criamos uma rotina de coleta automatizada, que busca, trata e organiza séries temporais econômicas diretamente das APIs oficiais, pronta para ser integrada a pipelines de previsão, dashboards ou agentes de IA econometristas.

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.