Análise da Produção Industrial com o R

O IBGE divulgou hoje pela manhã o resultado da Produção Industrial referente a setembro. A coletatratamento apresentação dos dados da pesquisa com o R é ensinada no nosso Curso de Análise de Conjuntura usando o R. A seguir, apresento uma parte do código que gera a apresentação disponível ao final do post.

O script começa carregando alguns pacotes:


library(tidyverse)
library(lubridate)
library(tstools)
library(sidrar)
library(zoo)
library(scales)
library(gridExtra)
library(tsibble)
library(timetk)
library(knitr)

Na sequência, importamos os dados da indústria geral e das atividades da indústria de transformação diretamente do SIDRA/IBGE com o pacote sidrar. Tanto o número índice encadeado quanto o número índice ajustado sazonalmente.


# Produção Física por Seção e Atividades
## Número-Indice com ajuste sazonal
tabela_sa = get_sidra(api='/t/3653/n1/all/v/3134/p/all/c544/all/d/v3134%201') %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Seções e atividades industriais (CNAE 2.0)", Valor) %>%
spread("Seções e atividades industriais (CNAE 2.0)", Valor) %>%
as_tibble()

## Número-Indice sem ajuste sazonal
tabela = get_sidra(api='/t/3653/n1/all/v/3135/p/all/c544/all/d/v3135%201') %>%
mutate(date = parse_date(`Mês (Código)`, format='%Y%m')) %>%
select(date, "Seções e atividades industriais (CNAE 2.0)", Valor) %>%
spread("Seções e atividades industriais (CNAE 2.0)", Valor) %>%
as_tibble()

Feito isso, podemos criar algumas métricas de crescimento com o código abaixo.


## Variação na Margem
tabela_sa_ts = ts(tabela_sa[,-1], start=c(year(tabela_sa$date[1]),
month(tabela_sa$date[1])), freq=12)
margem = (tabela_sa_ts/stats::lag(tabela_sa_ts,-1)-1)*100
colnames(margem) <- colnames(tabela_sa[,-1])
margem = tk_tbl(margem, preserve_index = TRUE,
rename_index = 'date')
margem_long = margem %>%
gather(variavel, valor, -date)

## Variação Interanual
tabela_ts = ts(tabela[,-1], start=c(year(tabela$date[1]),
month(tabela$date[1])), freq=12)
interanual = (tabela_ts/stats::lag(tabela_ts,-12)-1)*100
colnames(interanual) <- colnames(tabela[,-1])
interanual = tk_tbl(interanual, preserve_index = TRUE,
rename_index = 'date')
interanual_long = interanual %>%
gather(variavel, valor, -date)

## Variação acumulada em 12 meses
anual = acum_i(tabela_ts,12) %>%
as_tibble() %>%
mutate(date = tabela$date) %>%
drop_na() %>%
select(date, everything())

anual_long = anual %>%
gather(variavel, valor, -date)

Uma vez que conseguimos criar as métricas de crescimento, podemos apresentar as mesmas. Primeiro, em tabelas.

Produção Industrial: variação na margem
Mês Indústria Geral Indústria Extrativa Indústria de Transformação
abr 2020 -19.52 -0.46 -23.41
mai 2020 8.71 -5.00 13.29
jun 2020 9.59 5.02 10.41
jul 2020 8.62 9.21 9.30
ago 2020 3.61 3.09 3.65
set 2020 2.55 -3.73 3.87

Como se vê, a indústria geral tem apresentado seguidas variações positivas desde maio. O gráfico a seguir ilustra a retomada.


Essa retomada na margem, diga-se, aos poucos deve ser sentida nas outras métricas. Os gráficos abaixo mostram a recuperação quando se considera a variação interanual.

Mais lentamente, contudo, veremos uma recuperação sendo sentida na variação acumulada em 12 meses, como pode ser visto nos gráficos a seguir.

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Uma introdução à Inteligência Artificial e a Engenharia de Prompt

“Um especialista sabe todas as respostas, se você fizer as perguntas certas”. Este é o mesmo princípio usado nas técnicas de Prompt Engineering, com objetivo de otimizar as respostas de aplicações de IA generativa. Neste artigo apresentamos algumas destas técnicas com exemplos práticos em Python.

Como identificar mensagens de erro na coleta de dados de sites públicos

Quem trabalha com dados reais e precisa coletar informações de forma online usando APIs e links, sabe que erros de requisição são comuns, principalmente com dados públicos. Neste artigo, damos algumas dicas de como entender estes erros e mostramos um jeito simples de evitar que o código de Python “quebre” nestas situacões.

O que é e como calcular o Beta de Mercado usando o Python?

Neste tutorial, explicamos o conceito de Beta de Mercado e como calculá-lo por meio de regressão linear utilizando a linguagem de programação Python. Demonstramos como interpretar graficamente e analisar os parâmetros estimados do método estatístico, contextualizando-o na teoria financeira com um exemplo real. Em seguida, aprofundamos a análise, desenvolvendo um Beta com Janelas Deslizantes e aplicando o modelo CAPM. Por fim, utilizamos a regressão linear múltipla para reproduzir o modelo de três fatores de Fama-French, uma extensão do CAPM.

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.