Análise do Comércio Varejista com o R

O IBGE divulgou hoje pela manhã os resultados de abril da Pesquisa Mensal do Comércio (PMC). A PMC conta com script no nosso Curso de Análise de Conjuntura usando o R que automatiza a coleta, tratamento e apresentação dos dados diretamente do site do SIDRA/IBGE. No corte restrito, houve queda na margem de 16,84%. Já na publicação ampliada, que inclui veículos e materiais de construção, houve queda de 17,73% nessa mesma métrica de comparação. Na comparação interanual, com o mesmo mês do ano passado, a queda no varejo ampliado foi de 27,11%.

A abertura por atividades mostra uma queda de 60,58% na margem no volume de Tecidos, vestuário e calçados. Na comparação interanual, a queda foi de 75,62%, sendo a atividade que mais sofreu com a pandemia. Hipermercados e supermercados tiveram crescimento de 5,85% na comparação interanual.

A apresentação completa dos dados da PMC pode ser vista aqui. O script que gera a apresentação estará disponível na Versão 4.0 do nosso Curso de Análise de Conjuntura usando o R.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é e como funcionam Sistemas Multi-Agentes

Sistemas multi-agentes (MAS) representam uma nova forma de estruturar aplicações de inteligência artificial, especialmente úteis para lidar com problemas complexos e distribuídos. Em vez de depender de um único agente generalista, esses sistemas são compostos por múltiplos agentes especializados que colaboram, competem ou se coordenam para executar tarefas específicas. Neste post, explicamos o que são os MAS, seus principais componentes (como LLMs, ferramentas e processos) e as arquiteturas mais comuns.

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.