Análise do Mercado de Crédito com o R

A disponibilidade de crédito é uma variável de suma importância para impulsionar tanto o consumo das famílias quanto o investimento das firmas. Nesse Comentário de Conjuntura, por suposto, seguindo a análise do mercado de crédito que faço no Curso de Análise de Conjuntura usando o R, vamos dar uma olhada em alguns aspectos desse mercado. Para isso, vou utilizar aqui o pacote Quandl para pegar as séries do Banco Central diretamente para o R.


library(Quandl)
library(ggplot2)
library(scales)
Quandl.api_key('a sua chave aqui') # Permite mais de 50 acessos dia
credito_total = Quandl('BCB/20631', order='asc')

credito_pj = Quandl('BCB/20632', order='asc')
credito_pf = Quandl('BCB/20633', order='asc')

credito_livre = Quandl('BCB/20634', order='asc')
credito_direc = Quandl('BCB/20685', order='asc')


Os dados importados sofrem de sazonalidade, de modo que é preciso fazer o ajuste da série. Também é preciso deflacionar as séries, de modo a tornar a análise dos dados correta. Isso é feito com o código a seguir.


### Importar IPCA
library(sidrar)
ipca = get_sidra(api='/t/1737/n1/all/v/2266/p/all/d/v2266%2013')
ipca = ts(ipca$Valor, start=c(1979,12), freq=12)
ipca = window(ipca, start=c(2011,03))

### Pacote Seasonal
library(seasonal)
Sys.setenv(X13_PATH = "C:/Séries Temporais/R/Pacotes/seas/x13ashtml")
concessoes = ts(data.frame(credito_total$Value, credito_pj$Value,
credito_pf$Value, credito_livre$Value,
credito_direc$Value), start=c(2011,03), freq=12)
### Deflacionar Séries
concessoes <- ipca[length(ipca)-1]*(concessoes/ipca)

colnames(concessoes) = c('Total', 'juridica',
'fisica', 'livre', 'direcionado')
matrix <- matrix(NA, nrow = nrow(concessoes), ncol=ncol(concessoes))
colnames(matrix) <- colnames(concessoes)

for(i in 1:ncol(concessoes)){

matrix[,i] <- final(seas(concessoes[,i]))
}

concessoes_sa = data.frame(time=credito_total$Date, matrix)

Uma vez que os dados estejam tratados, podemos visualizá-los. Abaixo, vemos as concessões mensais totais.

Como se vê, há um avanço nas concessões mensais de crédito na margem. Podemos tentar entender melhor esse avanço com a abertura por pessoa física e jurídica. O gráfico abaixo ilustra.

Tanto as concessões mensais à pessoa física quanto jurídica mostram avanço nos últimos anos. Também podemos verificar o crédito quanto a diferenciação entre crédito livre e direcionado. O gráfico abaixo ilustra.

Observa-se uma diferença importante entre as categorias. Enquanto o crédito livre mostra avanço, o crédito direcionado tem se mantido estável nos últimos anos. A seguir, vemos o estoque de crédito normalizado pelo PIB.


library(tidyverse)
estoque_cred = Quandl('BCB/20539', order='asc',
start_date='1999-01-31')
pib = Quandl('BCB/4382', order='asc', start_date='1999-01-31')
estoque_cred = mutate(estoque_cred,
razao=estoque_cred$Value/pib$Value*100)
ggplot(estoque_cred, aes(Date, razao))+
geom_area(stat='identity', fill='darkblue', colour='darkblue')+
scale_y_discrete(limits=c(10,20,30,40,50))+
scale_x_date(breaks = date_breaks("1 years"),
labels = date_format("%Y"))+
theme(axis.text.x=element_text(angle=45, hjust=1),
plot.title = element_text(size=15))+
labs(x='', y='% PIB', title='Estoque de Crédito (% PIB)',
caption='Fonte: analisemacro.com.br')

Na ponta, há um leve avanço no estoque normalizado pelo PIB, refletindo o aumento das concessões mensais. A seguir, fazemos a divisão desse estoque entre crédito público e privado.

De fato, o estoque de crédito associado à instituições privados tem recuperado espaço em relação às instituições estatais. A seguir, olhamos para a taxa média de juros associada às operações de crédito.

As taxas médias na ponta ainda permanecem acima de 20% a.a., refletindo o que os economistas chamam de spread bancário, a diferença entre taxas de captação e aquelas cobradas dos que demandam crédito. O gráfico abaixo ilustra essas taxas de spread.

Como se vê, o spread permanece ainda elevado. A seguir, ilustramos o comportamento da inadimplência.

Por fim, vemos o comportamento do endividamento das famílias em relação à renda acumulada nos últimos 12 meses.

Uma recuperação mais pujante do mercado de crédito é crucial para que possamos acelerar o crescimento da economia brasileira. Para isso, contudo, são fundamentais as reformas microeconômicas que estão no radar tanto do Congresso Nacional quanto do próprio Banco Central.

_____________________________

(*) A análise completa está disponível no nosso Curso de Análise de Conjuntura usando o R.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como Construir um Monitor de Política Monetária Automatizado com Python?

Descubra como transformar dados do Banco Central em inteligência de mercado com um Monitor de Política Monetária Automatizado. Neste artigo, exploramos o desenvolvimento de uma solução híbrida (Python + R) que integra análise de sentimento das atas do COPOM, cálculo da Regra de Taylor e monitoramento da taxa Selic. Aprenda a estruturar pipelines ETL eficientes e a visualizar insights econômicos em tempo real através de um dashboard interativo criado com Shiny, elevando o nível das suas decisões de investimento.

Qual o efeito de um choque de juros sobre a inadimplência?

Neste exercício, exploramos a relação dinâmica entre o custo do crédito (juros na ponta) e o risco realizado (taxa de inadimplência) através de uma análise exploratória de dados e modelagem econométrica utilizando a linguagem de programação R.

Qual a relação entre benefícios sociais e a taxa de participação do mercado de trabalho?

Este exercício apresenta uma investigação econométrica sobre a persistente estagnação da taxa de participação no mercado de trabalho brasileiro no período pós-pandemia. Utilizando a linguagem R e dados públicos do IBGE e Banco Central, construímos um modelo de regressão linear múltipla com correção de erros robustos (Newey-West). A análise testa a hipótese de que o aumento real das transferências de renda (Bolsa Família/Auxílio Brasil) elevou o salário de reserva, desincentivando o retorno à força de trabalho.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.