Coleta do Índice Cielo do Varejo Ampliado com o R

Dada a defasagem na divulgação dos dados de nível de atividade e diante de uma das maiores crises da nossa geração, torna-se cada vez mais importante para economistas e analistas de mercado a busca por índices de alta frequência, bem como índices antecedentes. Dentro desse contexto, passou a ganhar bastante relevância, em particular para o acompanhamento do varejo brasileiro, o índice cielo do varejo ampliado (icva). Nesse Comentário de Conjuntura, eu mostro como fazer a coleta, tratamento e visualização desses dados.

Para começar, nós carregamos alguns pacotes.


require(tidyverse)
require(readxl)
require(scales)

A seguir, nós fazemos o download e leitura da planilha excel que está disponível no site da Cielo.


url = 'https://apicatalog.mziq.com/filemanager/v2/d/4d1ebe73-b068-4443-992a-3d72d573238c/3e864198-0b72-c970-1771-80cd8c338a30?origin=2'
download.file(url, destfile='icva.xlsx', mode='wb')
icva = read_excel('icva.xlsx')
colnames(icva) = c('date', 'nominal', 'nominal_sa', 'real', 'real_sa')

Uma vez coletados os dados, nós transformamos os mesmos para uma melhor visualização com o pacote ggplot2.


icva_long =
icva %>%
gather(metrica, values, -date) %>%
group_by(metrica)

Por fim, podemos gerar um gráfico com o código abaixo.


ggplot(icva_long, aes(x=date, y=values*100, colour=metrica))+
geom_line()+
theme(legend.title = element_blank(),
legend.position = 'top')+
geom_hline(yintercept=0, colour='black', linetype='dashed')+
scale_x_datetime(breaks = pretty_breaks(n=8))+
labs(x='', y='%',
title='Índice Cielo do Varejo Ampliado',
caption='Fonte: analisemacro.com.br com dados da Cielo')

Como é possível verificar, o ICVA chegou a cair 37% em abril na série real com ajuste sazonal.

____________________

(*) Você aprende a coletar, tratar e visualizar dados macroeconômicos no nosso Curso de Análise de Conjuntura usando o R.


_____________________

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como usar automação com Python e IA na análise de ações

No cenário atual, profissionais de finanças buscam formas mais rápidas, eficientes e precisas para analisar dados e tomar decisões. Uma das grandes revoluções para isso é o uso combinado de Python, automação e modelos de linguagem grande (LLMs), como o Google Gemini. O dashboard que criamos é um ótimo exemplo prático dessa integração, reunindo dados, cálculos, visualizações e análise textual em um único ambiente.

Análise de ações com IA - um guia inicial

Neste artigo, você vai aprender a integrar IA na análise de ações de forma automatizada utilizando Python. Ao final, você terá um pipeline completo capaz de coletar dados de mercado, gerar gráficos, elaborar relatórios com linguagem natural.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.