Evolução dos preços de combustíveis no Brasil

No Comentário de Conjuntura da semana passada, chamei atenção para a relação entre o preço do petróleo no mercado internacional e o preço da gasolina aqui no Brasil. Em particular, mostrei que as séries de petróleo, seja o tipo Brent, seja o WTI, são séries bastante voláteis ao longo do tempo. Dada a paridade adotada pela Petrobras desde 2016, ocorre uma correlação que implica em causalidade na relação entre esses preços.

Nesse Comentário, contudo, gostaria de mostrar a evolução dos preços de combustíveis como um todo, já que não nos parece que exista um aumento particular apenas para a gasolina.

Os dados de combustíveis são agregados e disponibilizados pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). Existe uma divulgação semanal e outra mensal sobre o preço da gasolina, diesel, GNV, GLP, etanol e suas variações.

O código que coleta e trata esses dados diretamente da ANP está disponível para os Membros do Clube AM. O tratamento envolve, basicamente, deflacionar esses preços, dado que os mesmos estão disponíveis nominalmente. Para esse exercício, utilizamos o Índice de Preços ao Consumidor Amplo (IPCA), coletado no SIDRA/IBGE.

Uma vez cumprida essas etapas, podemos construir um gráfico como abaixo.

A análise dessa base de dados tratada nos permite dizer que houve um choque pós-pandemia bastante forte nos preços de todos os combustíveis. Em particular, salta aos olhos a evolução do GLP, cujo efeito é direto sobre as famílias mais pobres.

Por óbvio, essa é uma base de dados que exibe uma correlação bastante alta e positiva entre os seus elementos, como mostra o gráfico acima. É surpreendente, porém, que os combustíveis que mais afetam os mais pobres, como o GNV e o óleo diesel, sejam relegados a segundo plano, seja por analistas, seja pela imprensa.

_______________________

(*) Conheça nosso Curso de Análise de Conjuntura e aprenda a coletar, tratar e visualizar dados macroeonômicos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Como incorporar choques em cenários de previsão?

Neste exercício mostramos como incorar choques no cenário de variáveis exógenas para fins de previsão. Usando como exemplo a previsão do IPCA, através de um modelo de machine learning, mostramos os cuidados a serem tomados e uma forma simples de definir o cenário com os choques. Ao final, apresentamos uma previsão com um suposto choque e uma previsão sem o choque para comparação.

Como preparar os dados para um modelo preditivo?

Modelos de previsão macroeconômica podem facilmente alcançar um número elevado de variáveis. Mesmo modelos simplificados, como o Modelo de Pequeno Porte (MPP) do Banco Central, usam cerca de 30 variáveis. Isso impõe um grande desafio ao nosso dia a dia: como fazer a gestão destes dados para uso em modelos, desde a coleta até o tratamento?

Transfer Learning para Previsão de Séries Temporais com o Python

A aprendizagem por transferência (ou transfer learning) é a técnica de reutilizar um modelo previamente treinado em um novo problema. Esse conceito representa um grande avanço para a previsão de variáveis, especialmente aquelas organizadas ao longo do tempo, como séries temporais. Neste post, exploramos como usar transfer learning com Python para trabalhar com esse tipo de dado.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.