Evolução dos preços de combustíveis no Brasil

No Comentário de Conjuntura da semana passada, chamei atenção para a relação entre o preço do petróleo no mercado internacional e o preço da gasolina aqui no Brasil. Em particular, mostrei que as séries de petróleo, seja o tipo Brent, seja o WTI, são séries bastante voláteis ao longo do tempo. Dada a paridade adotada pela Petrobras desde 2016, ocorre uma correlação que implica em causalidade na relação entre esses preços.

Nesse Comentário, contudo, gostaria de mostrar a evolução dos preços de combustíveis como um todo, já que não nos parece que exista um aumento particular apenas para a gasolina.

Os dados de combustíveis são agregados e disponibilizados pela Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). Existe uma divulgação semanal e outra mensal sobre o preço da gasolina, diesel, GNV, GLP, etanol e suas variações.

O código que coleta e trata esses dados diretamente da ANP está disponível para os Membros do Clube AM. O tratamento envolve, basicamente, deflacionar esses preços, dado que os mesmos estão disponíveis nominalmente. Para esse exercício, utilizamos o Índice de Preços ao Consumidor Amplo (IPCA), coletado no SIDRA/IBGE.

Uma vez cumprida essas etapas, podemos construir um gráfico como abaixo.

A análise dessa base de dados tratada nos permite dizer que houve um choque pós-pandemia bastante forte nos preços de todos os combustíveis. Em particular, salta aos olhos a evolução do GLP, cujo efeito é direto sobre as famílias mais pobres.

Por óbvio, essa é uma base de dados que exibe uma correlação bastante alta e positiva entre os seus elementos, como mostra o gráfico acima. É surpreendente, porém, que os combustíveis que mais afetam os mais pobres, como o GNV e o óleo diesel, sejam relegados a segundo plano, seja por analistas, seja pela imprensa.

_______________________

(*) Conheça nosso Curso de Análise de Conjuntura e aprenda a coletar, tratar e visualizar dados macroeonômicos.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Resultado PIB - 3° Trimestre/2024

A Análise Macro apresenta os resultados da PIB 3º trimestre de 2024, com gráficos e tabelas elaborados em Python para coleta, tratamento e visualização de dados.

Todo o conteúdo, disponível exclusivamente no Clube AM, foi desenvolvido com base nos métodos ensinados nos cursos da Análise Macro, permitindo aos assinantes acesso aos códigos e replicação das análises.

Como treinar e selecionar os melhores modelos de previsão no Python?

Em previsão, há uma infinidade de modelos que podem ser usados. O processo de escolha do(s) modelo(s) deve ser empírico-científico, usando métodos que visem avaliar a generalização dos algoritmos para dados novos. Neste artigo, mostramos como implementar a metodologia de validação cruzada com algoritmos de machine learning no Python, exemplificando para a previsão do IPCA.

Como selecionar variáveis para modelos de previsão no Python?

Em oposição à crença popular, grande parte dos modelos de machine learning não produzem previsões magicamente. É papel do cientista de dados executar uma boa engenharia de variáveis para não cair no clássico problema de “garbage in, garbage out” (GIGO) em aprendizado de máquina. Neste sentido, aprender a fazer uma boa seleção de variáveis é fundamental e neste artigo exploramos algumas possibilidades práticas usando o Python.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.