Falências e PIB Potencial: o efeito permanente do choque

Uma das grandes preocupações dos economistas nessa pandemia era evitar que ocorresse um número grande de falências de empresas. Isso porque, quanto maior o número de falências, maior o impacto sobre o potencial de crescimento da economia. Para ilustrar esse argumento, nesse Comentário de Conjuntura fiz um exercício simples que verifica o efeito de um choque no número de falências sobre o PIB Potencial da economia brasileira.

Como proxy para essas séries, utilizei o PIB Potencial construído pela IFI, a Instituição Fiscal Independente, e o total de falências decretadas disponibilizado pelo Serasa Experian. Foi, então, construído um modelo de correção de erros e extraída a função de impulso-resposta, considerando um choque no número de falências e o seu efeito sobre o PIB Potencial. O gráfico a seguir ilustra.

O aumento no número de falências tem efeitos deletérios sobre o potencial de crescimento da economia, como era esperado. Isso porque, o efeito mais visível da falência de empresas é a destruição de capacidade produtiva.

Os dados do levantamento da Serasa vão até abril. Como é provável que haja uma defasagem não desprezível entre a empresa ter dificuldades de caixa e a decretação de uma falência, ainda não é possível verificar um aumento nesse número em 2020. Entretanto, dadas as imensas dificuldades de acesso a crédito e o impacto considerável da pandemia no caixa das empresas, é de supor que esse número mostre algum avanço nos próximos meses.

Caso isso se confirme, o efeito sobre a capacidade produtiva do país será considerável.

____________________

(*) Conheça nosso Curso de Macroeconometria usando o R e aprenda a entender o organismo econômico por meio de equações.

(**) Você aprende a coletar, tratar, analisar e apresentar dados com o R em nossos Cursos Aplicados de R.

(***) Os alunos do plano premium dos nossos Cursos Aplicados de R  têm acesso a mais de 70 exercícios do Clube do Código.

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

O que é um Vector Database e como criar um com LangChain

Nesta postagem, mostramos como construir um pipeline simples de RAG (Retrieval-Augmented Generation) usando o LangChain, o modelo Gemini 2.0 Flash e o Vector Database Chroma. Utilizamos como exemplo o Relatório de Inflação de junho de 2025 do Banco Central do Brasil. O fluxo envolve o download e leitura do PDF, divisão do texto com RecursiveCharacterTextSplitter, geração de embeddings com Gemini, armazenamento vetorial com Chroma e busca semântica para responder perguntas com base no conteúdo do relatório. É uma aplicação prática e didática para economistas que desejam integrar IA ao seu fluxo de análise.

Automatizando a Construção de Códigos em Python com LangGraph

Neste post, mostramos como construir um agente de código em Python utilizando LangGraph, LangChain e Gemini. A proposta é construir um protótipo para automatizar o ciclo completo de geração, execução e correção de código com o uso de LLMs, organizando o processo em um grafo de estados.

Análise de Dados com REPL Tool e LLM usando LangGraph

Neste post, vamos mostrar como você pode criar um agente que interpreta e executa código Python em tempo real, utilizando o REPL-Tool e um LLM da família Gemini. Começamos com um exemplo genérico e, em seguida, aplicamos a mesma estrutura à análise econômica de uma série histórica do IPCA.

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.