O efeito Ilan à frente do Banco Central

[et_pb_section admin_label="section"][et_pb_row admin_label="row"][et_pb_column type="1_2"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

Ontem, o Banco Central divulgou a última ata do Comitê de Política Monetária (COPOM) sob a gestão de Ilan Goldfajn. A despeito das informações conjunturais lá postas, o momento é propício para se fazer uma avaliação da condução da política monetária no período de 2016-2018. Com esse objetivo, construímos abaixo um Índice de Credibilidade da Política Monetária brasileira, com base em Mendonça e Souza (2007) - aprenda a lidar com dados reais como esse em nossos Cursos Aplicados de R. A ideia básico de um índice desse tipo é verificar o quanto a expectativa de inflação se distancia da meta ao longo do tempo.

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_image admin_label="Imagem" src="https://analisemacro.com.br/wp-content/uploads/2019/01/newsletter2019.png" show_in_lightbox="off" url="https://analisemacro.com.br/cursos-de-r/" url_new_window="off" use_overlay="off" animation="off" sticky="off" align="center" force_fullwidth="off" always_center_on_mobile="on" use_border_color="off" border_color="#ffffff" border_style="solid"]

 

[/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row admin_label="row"][et_pb_column type="4_4"][et_pb_text admin_label="Texto" background_layout="light" text_orientation="justified" text_font="Verdana||||" text_font_size="18" use_border_color="off" border_color="#ffffff" border_style="solid"]

O índice acima está normalizado, de modo que se E(\pi) = \pi^M, o índice é igual a 1. Se, do contrário, E(\pi) \geq \pi_{max}^M ou E(\pi) \leq \pi_{min}^M, isto é, ele avançar além dos limites pré-estabelecidos, então o índice é zero. Observe, portanto, que o índice volta aos patamares de 2008-2009, quando o Banco Central conseguiu desinflacionar a economia brasileira após o choque cambial de 2002. Ilan entrega para o próximo presidente do Banco Central uma economia desinflacionada, com expectativas ancoradas e juro básico na mínima histórica. Um baita trabalho à frente da instituição!

_______________________________________________________________

Mendonça e Souza (2007), Credibilidade do Regime de Metas para Inflação no Brasil, Pesquisa e Planejamento Econômico, IPEA, 37(2)

Conheça nossos Cursos Aplicados de R e aprenda a coletar, tratar, analisar e apresentar dados reais com o R!

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Compartilhe esse artigo

Facebook
Twitter
LinkedIn
WhatsApp
Telegram
Email
Print

Comente o que achou desse artigo

Outros artigos relacionados

Criando operações SQL com IA Generativa no R com querychat

No universo da análise de dados, a velocidade para obter respostas é um diferencial competitivo. Frequentemente, uma simples pergunta de negócio — “Qual foi nosso produto mais vendido no último trimestre na região Nordeste?” — inicia um processo que envolve abrir o RStudio, escrever código dplyr ou SQL, executar e, finalmente, obter a resposta. E se pudéssemos simplesmente perguntar isso aos nossos dados em português, diretamente no nosso dashboard Shiny?

Dashboard Financeiro com IA e Shiny Python: Análise de Dados Abertos da CVM

Este artigo apresenta um tutorial completo sobre como construir uma ferramenta de análise financeira de ponta. Utilizando Shiny for Python, demonstramos a automação da coleta de dados das Demonstrações Financeiras Padronizadas (DFP) da CVM e o tratamento dessas informações com Pandas. O ponto alto do projeto é a integração da IA Generativa do Google Gemini, que atua como um assistente de análise, interpretando os dados filtrados pelo usuário e fornecendo insights contábeis e financeiros em tempo real. O resultado é um dashboard dinâmico que democratiza a análise de dados complexos e acelera a tomada de decisão.

Econometria, ML ou IA para previsão da PMS?

Prever a Pesquisa Mensal de Serviços (PMS/IBGE) é um desafio por natureza: trata-se de uma série mensal, sujeita a volatilidade e choques que vão de fatores sazonais a mudanças estruturais no setor. Para enfrentar esse problema, realizamos um exercício de comparação entre três abordagens de modelagem: econometria tradicional (ARIMA), machine learning (XGBoost) e inteligência artificial (TimeGPT).

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

Boletim AM

Receba diretamente em seu e-mail gratuitamente nossas promoções especiais e conteúdos exclusivos sobre Análise de Dados!

como podemos ajudar?

Preencha os seus dados abaixo e fale conosco no WhatsApp

Boletim AM

Preencha o formulário abaixo para receber nossos boletins semanais diretamente em seu e-mail.